版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年北師大新版高二數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四總分得分評(píng)卷人得分一、選擇題(共8題,共16分)1、橢圓的準(zhǔn)線方程是()
A.x=±5
B.y=±5
C.x=±4
D.y=±4
2、給一些書編號(hào),準(zhǔn)備用3個(gè)字符,其中首字符用后兩個(gè)字符用(允許重復(fù)),則不同編號(hào)的書共有A.8本B.9本C.12本D.18本3、【題文】將函數(shù)y=sin的圖像上各點(diǎn)向右平移個(gè)單位,則得到新函數(shù)的解析式為()A.y=sinB.y=sinC.y=sinD.y=sin4、【題文】若其中a、b∈R,i是虛數(shù)單位,則=()A.B.C.D.5、從{1,2,3,4,5}中隨機(jī)選取一個(gè)數(shù)為a,從{1,2,3}中隨機(jī)選取一個(gè)數(shù)為b,則b>a的概率是()A.B.C.D.6、函數(shù)f(x)的定義域?yàn)镽,f(1)=3,對(duì)任意x∈R,都有f(x)+f'(x)<2,則不等式ex?f(x)>2ex+e的解集為()A.{x|x<1}B.{x|x>1}C.{x|x<-1或x>1}D.{x|x<-1或0<x<1}7、已知正方形ABCD中,S是所在平面外一點(diǎn),連接SA,SB,SC,SD,AC,BD,在所有的10條直線中,其中異面直線共有()A.8對(duì)B.10對(duì)C.12對(duì)D.16對(duì)8、如圖;在長(zhǎng)方體ABCD鈭?A1B1C1D1
中,AB=2AD=1A1A=1
則直線BC1
到平面D1AC
的距離為(
)
A.13
B.1
C.23
D.43
評(píng)卷人得分二、填空題(共6題,共12分)9、已知函數(shù)f(x)=x2+ax+b,若f(1)=f(2),則a的值為____.10、函數(shù)的單調(diào)遞增區(qū)間__________________.11、【題文】若等差數(shù)列和的前n項(xiàng)和分別為和若對(duì)一切正整數(shù)n都有=則的值為____.12、若雙曲線的一條漸近線方程為則m=______.13、給出下列命題:
①若z∈C,則z2≥0
②若a,b∈R,且a>b,則a+i>bA+i
③若a∈R;則(a+1)i是純虛數(shù)。
④若z=則z3+1對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)的第一象限。
其中正確的命題是______.(寫出你認(rèn)為正確的所有命題的序號(hào))14、我們知道:n+pm(n+q)=pq鈭?1n鈭?p鈭?qq鈭?1n+q
.
已知數(shù)列{an}
中,a1=1an=2an鈭?1+n+2n(n+1)(n鈮?2,n隆脢N*)
則數(shù)列{an}
的通項(xiàng)公式an=
______.評(píng)卷人得分三、作圖題(共7題,共14分)15、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
16、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。ㄈ鐖D所示)17、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)18、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
19、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最小.(如圖所示)20、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)21、分別畫一個(gè)三棱錐和一個(gè)四棱臺(tái).評(píng)卷人得分四、計(jì)算題(共1題,共4分)22、如圖,已知正方形ABCD的邊長(zhǎng)是8,點(diǎn)E在BC邊上,且CE=2,點(diǎn)P是對(duì)角線BD上的一個(gè)動(dòng)點(diǎn),求PE+PC的最小值.參考答案一、選擇題(共8題,共16分)1、B【分析】
∵橢圓的準(zhǔn)線方程為y=
橢圓的a=c=1
∴橢圓的準(zhǔn)線方程是y=±5
故選B
【解析】【答案】因?yàn)闄E圓的準(zhǔn)線方程為y=所以只需求出橢圓的a和c的值即可,注意到此橢圓焦點(diǎn)在y軸上,所以a=c=1
2、D【分析】因?yàn)槔梅植接?jì)數(shù)乘法原理可知,那么先安排首字符有2種,結(jié)合安排后面的兩個(gè)字符有9種,則不同的編號(hào)共有12種,選D【解析】【答案】D3、A【分析】【解析】y=sin的圖像向右平移個(gè)單位后變?yōu)閥=sin=sin【解析】【答案】A4、C【分析】【解析】略【解析】【答案】C5、D【分析】【解答】解:由題意知本題是一個(gè)古典概型;
∵試驗(yàn)包含的所有事件根據(jù)分步計(jì)數(shù)原理知共有5×3種結(jié)果;
而滿足條件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3種結(jié)果;
∴由古典概型公式得到P==
故選D.
【分析】由題意知本題是一個(gè)古典概型,試驗(yàn)包含的所有事件根據(jù)分步計(jì)數(shù)原理知共有5×3種結(jié)果,而滿足條件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3種結(jié)果.6、A【分析】解:令g(x)=exf(x)-2ex-e;
則g′(x)=exf(x)+exf′(x)-2ex=ex[f(x)+f′(x)-2];
∵f(x)+f′(x)<2;
∴f(x)+f′(x)-2<0;
∴g′(x)<0;即g(x)在R上單調(diào)遞減;
又f(1)=3;∴g(1)=ef(1)-2e-e=0;
故當(dāng)x<1時(shí);g(x)>g(1);
即exf(x)-2ex-e>0,整理得exf(x)>2ex+e;
∴exf(x)>2ex+e的解集為{x|x<1}.
故選:A.
令g(x)=exf(x)-2ex-e;根據(jù)函數(shù)的單調(diào)性求出不等式的解集即可.
本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.【解析】【答案】A7、C【分析】解:如圖根據(jù)異面直線的判定定理;與AC異面的有2條直線,同理與BD異面的也有2條直線;
與AB異面的有2條直線;同理與BC;CD、DA異面的也有2條直線;除此再無(wú)異面直線情況;
故選C.
根據(jù)異面直線的判定定理:過平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線與平面內(nèi)不過該點(diǎn)的直線是異面直線.來(lái)判斷即可。
本題考查異面直線的判定,可根據(jù)異面直線的判定定理判斷.【解析】【答案】C8、C【分析】解:隆脽
幾何體為長(zhǎng)方體ABCD鈭?A1B1C1D1
隆脿AB//C1D1AB=C1D1
隆脿AD1//BC1
隆脽AD1?
平面ACD1BC1?
平面ACD1
隆脿
直線BC1//
平面ACD1
直線BC1
到平面D1AC
的距離即為點(diǎn)B
到平面D1AC
的距離設(shè)為h
考慮三棱錐ABCD1
的體積,以ABC
為底面,可得V=13隆脕(12隆脕1隆脕2)隆脕1=13
而D1AC
中,AC=D1C=5D1A=2
故S鈻?AD1C=32
.
隆脿13隆脕32h=13
隆脿h=23
即直線BC1
到平面D1AC
的距離為23
.
故選:C
.
利用線面平行的判定定理;判斷直線BC1//
平面ACD1
直線BC1
到平面D1AC
的距離即為點(diǎn)B
到平面D1AC
的距離,利用等體積,即可求出直線BC1
到平面D1AC
的距離.
本題考查了線面平行的判定,利用等體積求點(diǎn)到平面的距離,屬于中檔題.【解析】C
二、填空題(共6題,共12分)9、略
【分析】
由題意可得f(1)=12+a+b=f(2)=4+2a+b;
化簡(jiǎn)可得a=-3
故答案為:-3
【解析】【答案】由題意可得關(guān)于a,b的式子;化簡(jiǎn)可得a值.
10、略
【分析】求單調(diào)遞增區(qū)間令【解析】【答案】11、略
【分析】【解析】======【解析】【答案】12、略
【分析】解:雙曲線的漸近線方程為y=±
由一條漸近線方程為
可得m=
故答案為:.
雙曲線的漸近線方程為y=±結(jié)合條件即可得到所求m的值.
本題考查雙曲線的方程和性質(zhì),主要是漸近線方程的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.【解析】13、略
【分析】解:①若z=y∈C,則z2=-1,則z2≥0不成立;故①錯(cuò)誤;
②∵虛數(shù)不能比較大小,∴若a,b∈R,且a>b,則a+i>b+i錯(cuò)誤;故②錯(cuò)誤;
③若a∈R;則當(dāng)a=-1時(shí),(a+1)i=0,則(a+1)i是純虛數(shù)錯(cuò)誤,故③錯(cuò)誤;
④若z=則z3+1=1+i;對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(1,1),則對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)的第一象限正確,故④正確;
故答案為:④
根據(jù)復(fù)數(shù)的有關(guān)概念和幾何意義進(jìn)行判斷即可.
本題主要考查與復(fù)數(shù)有關(guān)的命題的真假判斷,比較基礎(chǔ).【解析】④14、略
【分析】解:a1=1an=2an鈭?1+n+2n(n+1)(n鈮?2,n隆脢N*)
=2an鈭?1+n+2n鈭?n+2n+1
=2an鈭?1+2n鈭?1n+1
即為an+1n+1=2(an鈭?1+1n)
設(shè)bn=an+1n+1
則bn=2bn鈭?1
則bn=b1qn鈭?1=(1+12)?2n鈭?1
可得an+1n+1=3?2n鈭?2
即有an=3?2n鈭?2鈭?1n+1(n隆脢N*)
.
故答案為:3?2n鈭?2鈭?1n+1(n隆脢N*)
.
由題意可得an+1n+1=2(an鈭?1+1n)
設(shè)bn=an+1n+1
由等比數(shù)列的定義和通項(xiàng)公式,計(jì)算即可得到所求通項(xiàng).
本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用構(gòu)造等比數(shù)列,考查等比數(shù)列的定義和通項(xiàng)公式的運(yùn)用,考查運(yùn)算能力,屬于中檔題.【解析】3?2n鈭?2鈭?1n+1(n隆脢N*)
三、作圖題(共7題,共14分)15、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
16、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.17、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最小;
理由是兩點(diǎn)之間,線段最短.18、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
19、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.20、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最小;
理由是兩點(diǎn)之間,線段最短.21、解:畫三棱錐可分三步完成。
第一步:畫底面﹣﹣畫一個(gè)三角形;
第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);
第三步:畫側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).
畫四棱可分三步完成。
第一步:畫一個(gè)四棱錐;
第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開始,順次在各個(gè)面內(nèi)畫與底面對(duì)應(yīng)線段平行的線段;
第三步:將多余線段擦去.
【分析】【分析】畫三棱錐和畫四棱臺(tái)都是需要先畫底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫四棱臺(tái)時(shí),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版基礎(chǔ)設(shè)施建設(shè)工程施工合同終止補(bǔ)充協(xié)議2篇
- 買賣墓地合同(2024版)
- 2025年度城鄉(xiāng)實(shí)體地域變更與土地確權(quán)合同3篇
- 2025版小學(xué)營(yíng)養(yǎng)餐配送質(zhì)量保證合同范本3篇
- 基于2025年度的環(huán)保項(xiàng)目合作合同5篇
- 二零二五版?zhèn)}儲(chǔ)物流用地租賃及服務(wù)合同3篇
- 2025版小企業(yè)合同管理規(guī)范與內(nèi)部控制制度匯編2篇
- 二零二五版酒店客房裝修與智能家居系統(tǒng)合同5篇
- 2025年度特色主題飯店轉(zhuǎn)讓與經(jīng)營(yíng)管理協(xié)議
- 2025年度體育產(chǎn)業(yè)管理人員聘用合同模板
- 2025年度房地產(chǎn)權(quán)證辦理委托代理合同典范3篇
- 柴油墊資合同模板
- 湖北省五市州2023-2024學(xué)年高一下學(xué)期期末聯(lián)考數(shù)學(xué)試題
- 城市作戰(zhàn)案例研究報(bào)告
- 【正版授權(quán)】 ISO 12803:1997 EN Representative sampling of plutonium nitrate solutions for determination of plutonium concentration
- 道德經(jīng)全文及注釋
- 2024中考考前地理沖刺卷及答案(含答題卡)
- 多子女贍養(yǎng)老人協(xié)議書范文
- 彩票市場(chǎng)銷售計(jì)劃書
- 骨科抗菌藥物應(yīng)用分析報(bào)告
- 支付行業(yè)反洗錢與反恐怖融資
評(píng)論
0/150
提交評(píng)論