廣東信息工程職業(yè)學(xué)院《大數(shù)據(jù)實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
廣東信息工程職業(yè)學(xué)院《大數(shù)據(jù)實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
廣東信息工程職業(yè)學(xué)院《大數(shù)據(jù)實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
廣東信息工程職業(yè)學(xué)院《大數(shù)據(jù)實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
廣東信息工程職業(yè)學(xué)院《大數(shù)據(jù)實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁,共3頁廣東信息工程職業(yè)學(xué)院《大數(shù)據(jù)實(shí)戰(zhàn)》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、大數(shù)據(jù)可視化工具可以幫助用戶更好地理解和分析數(shù)據(jù),以下關(guān)于大數(shù)據(jù)可視化工具的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可視化工具可以提供多種圖表和圖形,如柱狀圖、折線圖、餅圖等B.大數(shù)據(jù)可視化工具可以支持實(shí)時(shí)數(shù)據(jù)可視化和動(dòng)態(tài)數(shù)據(jù)可視化C.大數(shù)據(jù)可視化工具只適用于數(shù)據(jù)分析師和專業(yè)人員,不適用于普通用戶D.大數(shù)據(jù)可視化工具需要具備良好的用戶界面和交互性2、在大數(shù)據(jù)可視化中,為了展示數(shù)據(jù)的分布情況,以下哪種圖表類型通常被使用?()A.直方圖B.箱線圖C.小提琴圖D.以上都是3、在大數(shù)據(jù)處理框架中,Kafka常用于消息隊(duì)列。以下關(guān)于Kafka的特點(diǎn),哪一項(xiàng)是不正確的?()A.支持高吞吐量的數(shù)據(jù)傳遞B.能夠保證消息的順序傳遞C.具有良好的擴(kuò)展性和容錯(cuò)性D.不適合處理實(shí)時(shí)性要求極高的消息4、在大數(shù)據(jù)處理中,數(shù)據(jù)可視化的工具和技術(shù)有很多種,以下關(guān)于數(shù)據(jù)可視化工具和技術(shù)的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)可視化工具可以提供多種圖表和圖形,如柱狀圖、折線圖、餅圖等B.數(shù)據(jù)可視化工具可以支持實(shí)時(shí)數(shù)據(jù)可視化和動(dòng)態(tài)數(shù)據(jù)可視化C.數(shù)據(jù)可視化工具只適用于數(shù)據(jù)分析師和專業(yè)人員,不適用于普通用戶D.數(shù)據(jù)可視化工具需要具備良好的用戶界面和交互性5、在大數(shù)據(jù)處理中,數(shù)據(jù)并行處理是一種常用的技術(shù),以下關(guān)于數(shù)據(jù)并行處理的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)并行處理可以提高數(shù)據(jù)處理的速度和效率B.數(shù)據(jù)并行處理需要將數(shù)據(jù)分成多個(gè)小塊,分別進(jìn)行處理C.數(shù)據(jù)并行處理只適用于大規(guī)模數(shù)據(jù)的處理,不適用于小規(guī)模數(shù)據(jù)的處理D.數(shù)據(jù)并行處理需要使用分布式計(jì)算框架,如MapReduce、Spark等6、在大數(shù)據(jù)處理中,為了處理數(shù)據(jù)的不一致性和錯(cuò)誤,以下哪種方法經(jīng)常被采用?()A.數(shù)據(jù)驗(yàn)證B.數(shù)據(jù)修復(fù)C.數(shù)據(jù)清洗D.以上都是7、假設(shè)要對(duì)一個(gè)包含數(shù)十億條記錄的數(shù)據(jù)集進(jìn)行快速排序,以下哪種算法在大數(shù)據(jù)環(huán)境下可能表現(xiàn)更好?()A.冒泡排序B.快速排序C.歸并排序D.堆排序8、在電商領(lǐng)域,大數(shù)據(jù)發(fā)揮著重要作用。以下關(guān)于大數(shù)據(jù)在電商中應(yīng)用的說法,錯(cuò)誤的是()A.可以根據(jù)用戶的瀏覽和購買歷史進(jìn)行個(gè)性化推薦B.能夠分析市場(chǎng)趨勢(shì),幫助商家制定營(yíng)銷策略C.可以實(shí)時(shí)監(jiān)控庫存,實(shí)現(xiàn)精準(zhǔn)的庫存管理D.大數(shù)據(jù)在電商中的應(yīng)用主要集中在商品銷售環(huán)節(jié),對(duì)供應(yīng)鏈管理幫助不大9、對(duì)于一個(gè)包含大量地理位置信息的大數(shù)據(jù)集,要進(jìn)行空間查詢和分析,以下哪種數(shù)據(jù)庫或技術(shù)更適合?()A.空間數(shù)據(jù)庫B.文檔數(shù)據(jù)庫C.關(guān)系數(shù)據(jù)庫D.內(nèi)存數(shù)據(jù)庫10、在大數(shù)據(jù)處理中,流處理和批處理是兩種常見的方式。假設(shè)我們需要實(shí)時(shí)監(jiān)控一個(gè)網(wǎng)站的訪問流量,并及時(shí)做出響應(yīng),以下哪種處理方式更適合?()A.流處理B.批處理C.先進(jìn)行批處理,再進(jìn)行流處理D.流處理和批處理結(jié)合使用11、在大數(shù)據(jù)分析中,數(shù)據(jù)降維是一種常見的操作。如果數(shù)據(jù)具有較高的維度且存在相關(guān)性,以下哪種降維方法較為常用?()A.主成分分析B.因子分析C.線性判別分析D.以上都是12、在大數(shù)據(jù)存儲(chǔ)中,為了支持動(dòng)態(tài)擴(kuò)展和靈活的數(shù)據(jù)模型,以下哪種數(shù)據(jù)庫類型通常被選擇?()A.文檔數(shù)據(jù)庫B.關(guān)系數(shù)據(jù)庫C.圖數(shù)據(jù)庫D.列式數(shù)據(jù)庫13、在大數(shù)據(jù)環(huán)境中,為了確保數(shù)據(jù)的安全性和隱私性,以下哪種措施是至關(guān)重要的?()A.數(shù)據(jù)加密B.訪問控制C.數(shù)據(jù)備份D.數(shù)據(jù)壓縮14、數(shù)據(jù)倉庫是大數(shù)據(jù)存儲(chǔ)和分析的重要工具,以下關(guān)于數(shù)據(jù)倉庫的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)倉庫用于存儲(chǔ)歷史數(shù)據(jù),以便進(jìn)行數(shù)據(jù)分析和決策支持B.數(shù)據(jù)倉庫中的數(shù)據(jù)通常是經(jīng)過清洗和轉(zhuǎn)換的高質(zhì)量數(shù)據(jù)C.數(shù)據(jù)倉庫可以支持聯(lián)機(jī)事務(wù)處理(OLTP)和聯(lián)機(jī)分析處理(OLAP)D.數(shù)據(jù)倉庫中的數(shù)據(jù)通常按照主題進(jìn)行組織15、在大數(shù)據(jù)項(xiàng)目管理中,以下關(guān)于確定項(xiàng)目需求的描述,哪一項(xiàng)不太準(zhǔn)確?()A.需要與業(yè)務(wù)部門充分溝通,了解其實(shí)際需求和期望B.只關(guān)注當(dāng)前的業(yè)務(wù)需求,不需要考慮未來的發(fā)展C.對(duì)需求進(jìn)行詳細(xì)的分析和文檔化,確保各方理解一致D.評(píng)估需求的可行性和優(yōu)先級(jí)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說明大數(shù)據(jù)在商業(yè)領(lǐng)域的應(yīng)用場(chǎng)景。2、(本題5分)在大數(shù)據(jù)環(huán)境下,如何進(jìn)行數(shù)據(jù)血緣的自動(dòng)發(fā)現(xiàn)?3、(本題5分)大數(shù)據(jù)對(duì)漁業(yè)資源管理的幫助是什么?4、(本題5分)大數(shù)據(jù)如何影響教育行業(yè)?三、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)用Python編寫一個(gè)程序,使用Hive對(duì)存儲(chǔ)在Hadoop中的用戶瀏覽網(wǎng)頁的歷史記錄進(jìn)行分析,找出用戶訪問最頻繁的網(wǎng)站類別。2、(本題5分)利用Python語言和TensorFlow框架,構(gòu)建一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN),對(duì)大規(guī)模的手寫數(shù)字圖像進(jìn)行識(shí)別。要求模型具有較高的準(zhǔn)確率。3、(本題5分)使用Python的Hadoop框架,對(duì)一個(gè)包含城市路燈照明數(shù)據(jù)的大數(shù)據(jù)集進(jìn)行分析。找出照明時(shí)間最長(zhǎng)的10條街道,并計(jì)算這些街道的平均照明時(shí)間。4、(本題5分)利用Spark框架,讀取一個(gè)包含游戲玩家行為數(shù)據(jù)的文件,分析玩家的游戲時(shí)長(zhǎng)、游戲等級(jí)與游戲消費(fèi)之間的關(guān)系。5、(本題5分)使用Python的Pandas庫,分析一個(gè)包含電影演員票房號(hào)召力數(shù)據(jù)的大規(guī)模數(shù)據(jù)集。找出票房號(hào)召力最強(qiáng)的10個(gè)演員,并計(jì)算他們的平均票房號(hào)召力。四、綜合分析題(本大題共4個(gè)小題,共40分)1、(本題10分)分析某在線旅游平臺(tái)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論