版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年華師大版高一數(shù)學(xué)上冊月考試卷601考試試卷考試范圍:全部知識點(diǎn);考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共9題,共18分)1、如圖;在三棱錐P-ABC中,已知PC⊥BC,PC⊥AC,點(diǎn)E,F(xiàn),G分別是所在棱的中點(diǎn),則下面結(jié)論中錯誤的是()
A.平面EFG∥平面PBC
B.平面EFG⊥平面ABC
C.∠BPC是直線EF與直線PC所成的角。
D.∠FEG是平面PAB與平面ABC所成二面角的平面角。
2、二次函數(shù)y=x2-4x+3在區(qū)間[1,4]上的值域是()A.[-1,+∞)B.(0,3]C.[-1,3]D.(-1,3]3、定義運(yùn)算如已知則().A.B.C.D.4、【題文】有一個幾何體的三視圖如圖所示;則該幾何體的體積為。
A.16B.20C.24D.325、【題文】若關(guān)于的代數(shù)式滿足:①②
③④
則()A.B.C.D.6、【題文】球O的截面把垂直于截面的直徑分成1∶3的兩段,若截面圓半徑為3,則球的體積為()A.16πB.C.D.7、若=則下列結(jié)論一定成立的是()A.A與C重合B.A與C重合,B與D重合C.||=||D.四點(diǎn)共線8、函數(shù)y=sin2x鈭?3cos2x
的圖象的一條對稱軸方程為(
)
A.x=婁脨12
B.x=鈭?婁脨12
C.x=婁脨3
D.x=鈭?婁脨6
9、已知直線l1y=ax鈭?2a+5
過定點(diǎn)A
則點(diǎn)A
到直線lx鈭?2y+3=0
的距離為(
)
A.25
B.55
C.5
D.255
評卷人得分二、填空題(共6題,共12分)10、函數(shù)的定義域為____.11、將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,則函數(shù)在上的最小值為.12、【題文】已知則和=____。13、【題文】若函數(shù)在處有極大值,則常數(shù)的值為_________;14、【題文】方程x2+y2+2ax-2ay=0表示的圓①關(guān)于直線y=x對稱;②關(guān)于直線x+y=0對稱;③其圓心在x軸上,且過原點(diǎn);④其圓心在y軸上,且過原點(diǎn).其中敘述正確的是__________.15、設(shè)向量的夾角為120°,則實數(shù)k=______.評卷人得分三、計算題(共6題,共12分)16、先化簡,再求值:,其中.17、如圖,已知在△ABC中,若AC和BC邊的長是關(guān)于x的方程x2-(AB+4)x+4AB+8=0的兩個根,且25BC?sinA=9AB.求△ABC三邊的長?18、解分式方程:.19、(2009?鏡湖區(qū)校級自主招生)如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=4,CD=2,對角線AC與BD交于點(diǎn)M.則點(diǎn)M到BC的距離是____.20、如圖,直角△ABC中,∠BAC=90°,AB=AC=15,AE為過點(diǎn)A的直線,BD⊥AE于D,CE⊥AE于E,CE=9,則DE=____.21、若直線y=(m-2)x+m經(jīng)過第一、二、四象限,則m的范圍是____.評卷人得分四、證明題(共3題,共30分)22、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.23、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.24、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評卷人得分五、綜合題(共3題,共12分)25、先閱讀下面的材料再完成下列各題
我們知道,若二次函數(shù)y=ax2+bx+c對任意的實數(shù)x都有y≥0,則必有a>0,△=b2-4ac≤0;例如y=x2+2x+1=(x+1)2≥0,則△=b2-4ac=0,y=x2+2x+2=(x+1)2+1>0,則△=b2-4ac<0.
(1)求證:(a12+a22++an2)?(b12+b22++bn2)≥(a1?b1+a2?b2++an?bn)2
(2)若x+2y+3z=6,求x2+y2+z2的最小值;
(3)若2x2+y2+z2=2;求x+y+z的最大值;
(4)指出(2)中x2+y2+z2取最小值時,x,y,z的值(直接寫出答案).26、已知拋物線y=-x2+2mx-m2-m+2.
(1)判斷拋物線的頂點(diǎn)與直線L:y=-x+2的位置關(guān)系;
(2)設(shè)該拋物線與x軸交于M;N兩點(diǎn);當(dāng)OM?ON=4,且OM≠ON時,求出這條拋物線的解析式;
(3)直線L交x軸于點(diǎn)A,(2)中所求拋物線的對稱軸與x軸交于點(diǎn)B.那么在對稱軸上是否存在點(diǎn)P,使⊙P與直線L和x軸同時相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.27、如圖,拋物線y=x2-2x-3與坐標(biāo)軸交于A(-1,0)、B(3,0)、C(0,-3)三點(diǎn),D為頂點(diǎn).
(1)D點(diǎn)坐標(biāo)為(____,____).
(2)BC=____,BD=____,CD=____;并判斷△BCD的形狀.
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請寫出符合條件的所有點(diǎn)P的坐標(biāo),并對其中一種情形說明理由;若不存在,請說明理由.參考答案一、選擇題(共9題,共18分)1、D【分析】
點(diǎn)E;F,G分別是所在棱的中點(diǎn);
∴根據(jù)三角形中位線的性質(zhì)得到三條線分別平行;
∴兩個平面平行故A正確;
∵PC⊥BC;PC⊥AC;
∴PC⊥面ABC;
∵FG∥PC
∴FG⊥面ABC;
∴平面EFG⊥平面ABC
故B正確;
有FE∥BP知C正確;
故選D.
【解析】【答案】根據(jù)線線平行得到面面平行;知A正確,根據(jù)線面垂直得到面面垂直得到B正確,根據(jù)線線平行得到異面直線的夾角得到C正確.
2、C【分析】因為此二次函數(shù)的對稱軸為x=2,所以當(dāng)x=2時,y最小,最小值為-1,當(dāng)x=4時,y最大,最大值為3.故值域為[-1,3].【解析】【答案】C3、A【分析】【解析】【答案】A4、B【分析】【解析】
試題分析:由三視圖可知,該幾何體是一個長方體截去一個三棱錐,所以該幾何體的體積為
考點(diǎn):本小題主要考查三視圖和空間幾何體的體積計算.
點(diǎn)評:解決此類問題的關(guān)鍵是根據(jù)三視圖正確還原幾何體,考查學(xué)生的空間想象能力.【解析】【答案】B5、A【分析】【解析】依題意可得;
而
所以
則故選A【解析】【答案】A6、C【分析】【解析】由R2=R2+3,得R=2,故V=.【解析】【答案】C7、C【分析】【解答】∵=,∴||=||;
故選:C.
【分析】利用向量相等的定義即可得出。8、B【分析】解:函數(shù)y=sin2x鈭?3cos2x=2(12sin2x鈭?32cos2x)=2sin(2x鈭?婁脨3)
令2x鈭?婁脨3=k婁脨+婁脨2
求得x=k婁脨2+5婁脨12k隆脢Z
可得函數(shù)的圖象的對稱軸方程為x=k婁脨2+5婁脨12k隆脢Z
結(jié)合所給的選項;
故選:B
.
利用兩角和差的正弦公式化簡函數(shù)的解析式;再利用正弦函數(shù)的圖象的對稱性,得出結(jié)論.
本題主要考查兩角和差的正弦公式,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.【解析】B
9、C【分析】解:由直線l1y=ax鈭?2a+5
可得a(x鈭?2)+(5鈭?y)=0隆脿x=2y=5
即A(2,5)
點(diǎn)A
到直線lx鈭?2y+3=0
的距離為|2鈭?10+3|1+4=5
故選:C
.
求出定點(diǎn)A
的坐標(biāo);利用點(diǎn)到直線的距離公式可得結(jié)論.
本題考查直線過定點(diǎn),考查點(diǎn)到直線的距離公式,屬于中檔題.【解析】C
二、填空題(共6題,共12分)10、略
【分析】
要是函數(shù)有意義,須-x2+x+6>0;
解得-2<x<3;
∴函數(shù)的定義域為(-2;3).
故答案為:(-2;3)
【解析】【答案】根據(jù)影響函數(shù)定義域的因素為分母不為零和偶次被開方式非負(fù),即可得到不等式-x2+x+6>0;借此不等式即可求得結(jié)果.
11、略
【分析】試題分析:∵∴將其圖像向右平移個單位長度后得到的函數(shù)為∴當(dāng)時,∴在的最小值為考點(diǎn):三角函數(shù)的圖像和性質(zhì).【解析】【答案】12、略
【分析】【解析】解:因為則和=500.【解析】【答案】50013、略
【分析】【解析】解:因為函數(shù)在處有極大值,
經(jīng)驗證符合題意。
則常數(shù)的值為6【解析】【答案】614、略
【分析】【解析】圓心坐標(biāo)為(-a,a),在x+y=0上,所以圓關(guān)于x+y=0對稱.【解析】【答案】②15、略
【分析】解:由向量夾角公式可得,cos120°===-
∴k>0
整理可得,k2=9
∴k=3
故答案為:3
由向量夾角公式可得,cos120°==<0可知;k>0,解方程即可求解k
本題主要考查了向量夾角公式的坐標(biāo)表示,解題中不要漏掉對k的范圍的判斷,本題容易漏掉判斷k而產(chǎn)生兩解k=±3【解析】3三、計算題(共6題,共12分)16、略
【分析】【分析】先把括號內(nèi)通分得原式=?,再把各分式的分子和分母因式分解約分得原式=2(x+2),然后把x=-2代入計算即可.【解析】【解答】解:原式=?
=?
=?
=2(x+2)
=2x+4;
當(dāng)x=-2;
原式=2(-2)+4=2.17、略
【分析】【分析】首先由根與系數(shù)的關(guān)系可以得到AC+BC=AB+4(1),AC?BC=4AB+8(2),然后由(1)2-2(2)得AC2+BC2=AB2;
然后利用勾股定理的逆定理即可判定△ABC是直角三角形,且∠C=90°,接著利用三角函數(shù)可以得到=sinA;
由25BC?sinA=9AB可以得到sinA?=,然后就可以求出sinA=,也就求出=,設(shè)BC=3k,AB=5k,由勾股定理得AC=4k,這樣利用(1)即可解決問題.【解析】【解答】解:依題意得:AC+BC=AB+4(1)
AC?BC=4AB+8(2);
由(1)2-2(2)得:AC2+BC2=AB2;
∴△ABC是直角三角形;且∠C=90°;
在Rt△ABC中,=sinA;
由題意得:sinA?=;
∵∠A是Rt△ABC的銳角;
∴sinA>0;
∴sinA=;
∴=;
設(shè)BC=3k;AB=5k,由勾股定理得AC=4k;
結(jié)合(1)式得4k+3k=5k+4;解之得:k=2.
∴BC=6,AB=10,AC=8.18、略
【分析】【分析】先去分母得到整式方程2x2+5x-7=x(x-1),再整理后解整式方程得到x1=-7,x2=1,然后進(jìn)行檢驗,把x1=-7,x2=1分別代入x(x-1)中計算得到x=1時,x(x-1)=0;x=-7時,x(x-1)≠0,即可得到原方程的解.【解析】【解答】解:方程兩邊同時乘以x(x-1),得2x2+5x-7=x(x-1);
整理得x2+6x-7=0;即(x+7)(x-1)=0;
解得x1=-7,x2=1;
經(jīng)檢驗;x=-7是原方程的解;x=1是原方程的增根;
所以原方程的解是x=-7.19、略
【分析】【分析】過M點(diǎn)作MN⊥BC,利用平行線的性質(zhì)得到AB、CD、MN之間的關(guān)系后代入后即可求得M到BC的距離.【解析】【解答】解:如圖;過M點(diǎn)作MN⊥BC于N;
由平行線的性質(zhì)可得;
∴可求得MN=
故答案為.20、略
【分析】【分析】要求DE,求AE,AD即可:求證△ABD≌△ACE,即可得AD=CE,直角△AEC中根據(jù)AE=得AE,根據(jù)DE=AE-AD即可解題.【解析】【解答】解:在直角△AEC中;∠AEC=90°;
AC=15,CE=9,則AE==12;
∵∠BAD+∠CAD=90°;∠ABD+∠BAD=90°;
∴∠ABD=∠CAE;
∴
△ABD≌△CAE;
∴AD=CE=9;
∴DE=AE-AD=AE-AD=3.
故答案為3.21、略
【分析】【分析】若函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限,則k<0,b>0,由此可以確定m的取值范圍.【解析】【解答】解:∵直線y=(m-2)x+m經(jīng)過第一;二、四象限;
∴m-2<0;m>0;
故0<m<2.
故填空答案:0<m<2.四、證明題(共3題,共30分)22、略
【分析】【分析】構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點(diǎn)共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.23、略
【分析】【分析】構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點(diǎn)共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.24、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.五、綜合題(共3題,共12分)25、略
【分析】【分析】(1)首先構(gòu)造二次函數(shù):f(x)=(a1x+b1)2+(a2x+b2)2++(anx+bn)2=(a12+a22++an2)x2+2(a1b1+a2b2++anbn)x+(b12+b22++bn2),由(a1x+b1)2+(a2x+b2)2++(anx+bn)2≥0,即可得f(x)≥0,可得△=4(a1b1+a2b2++anbn)2-4(a12+a22++an2)(b12+b22++bn2)≤0,整理即可證得:(a12+a22++an2)?(b12+b22++bn2)≥(a1?b1+a2?b2++an?bn)2;
(2)利用(1)可得:(1+4+9)(x2+y2+z2)≥(x+2y+3z)2;又由x+2y+3z=6,整理求解即可求得答案;
(3)利用(1)可得:(2x2+y2+z2)(+1+1)≥(x+y+z)2,又由2x2+y2+z2=2;整理求解即可求得答案;
(4)因為當(dāng)且僅當(dāng)==時等號成立,即可得當(dāng)且僅當(dāng)x==時,x2+y2+z2取最小值,又由x+2y+3z=6,即可求得答案.【解析】【解答】解:(1)構(gòu)造二次函數(shù):f(x)=(a1x+b1)2+(a2x+b2)2++(anx+bn)2=(a12+a22++an2)x2+2(a1b1+a2b2++anbn)x+(b12+b22++bn2)≥0;
∴△=4(a1b1+a2b2++anbn)2-4(a12+a22++an2)(b12+b22++bn2)≤0;
即:(a12+a22++an2)?(b12+b22++bn2)≥(a1?b1+a2?b2++an?bn)2;
當(dāng)且僅當(dāng)==時等號成立;
(2)根據(jù)(1)可得:(1+4+9)(x2+y2+z2)≥(x+2y+3z)2;
∵x+2y+3z=6;
∴14(x2+y2+z2)≥36;
∴x2+y2+z2≥;
∴若x+2y+3z=6,則x2+y2+z2的最小值為;
(3)根據(jù)(1)可得:(2x2+y2+z2)(+1+1)≥(x+y+z)2;
∵2x2+y2+z2=2;
∴(x+y+z)2≤2×=5;
∴-≤x+y+z≤;
∴若2x2+y2+z2=2,則x+y+z的最大值為;
(4)∵當(dāng)且僅當(dāng)x==時,x2+y2+z2取最小值;
設(shè)x===k;
則x=k;y=2k,z=3k;
∵x+2y+3z=6;
∴k+4k+9k=6;
解得:k=;
∴當(dāng)x2+y2+z2取最小值時,x=,y=,z=.26、略
【分析】【分析】(1)根據(jù)拋物線y=-x2+2mx-m2-m+2=-(x-m)2-m+2;得出頂點(diǎn)坐標(biāo)代入一次函數(shù)解析式即可;
(2)利用已知得出x1x2=m2+m-2,|m2+m-2|=4;進(jìn)而求出m的值,再利用根的判別式得出m的取值范圍,進(jìn)而求出;
(3)分別利用點(diǎn)P1到直線L的距離P1Q1為a,以及點(diǎn)P2到直線L的距離P2Q2為b求出即可.【解析】【解答】解:(1)由拋物線y=-x2+2mx-m2-m+2=-(x-m)2-m+2;
得頂點(diǎn)坐標(biāo)為(m;-m+2),顯然滿足y=-x+2
∴拋物線的頂點(diǎn)在直線L上.
(2)設(shè)M(x1,0),N(x2,0),且x1<x2.
由OM?ON=4,OM≠ON,得|x1?x2|=4.
∵x1x2=m2+m-2,∴|m2+m-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025購銷合同書下載范文
- 2025機(jī)械(設(shè)備)租賃合同
- 二零二五年度全新托管班教學(xué)質(zhì)量監(jiān)控合同3篇
- 2025年度公司設(shè)立前股東共同管理細(xì)則協(xié)議3篇
- 二零二五年度委托監(jiān)護(hù)與協(xié)議監(jiān)護(hù)生活照料安全保障全面服務(wù)合同2篇
- 二零二五年度農(nóng)產(chǎn)品市場開拓與推廣合同3篇
- 二零二五年度加油站防火門定期檢查與快速更換服務(wù)協(xié)議3篇
- 2025年度公司與施工隊基礎(chǔ)設(shè)施建設(shè)項目施工合同3篇
- 2025年度保險公司與災(zāi)害應(yīng)急救援合作保障協(xié)議3篇
- 二零二五年度養(yǎng)殖場養(yǎng)殖技術(shù)研發(fā)用工合同3篇
- 央國企信創(chuàng)化與數(shù)字化轉(zhuǎn)型規(guī)劃實施
- 會計學(xué)原理期末測試練習(xí)題及答案
- 2024年7月國家開放大學(xué)法律事務(wù)專科《企業(yè)法務(wù)》期末紙質(zhì)考試試題及答案
- 《教師法》培訓(xùn)課件
- 常用護(hù)理評估表及注意事項
- 河北省唐山地區(qū)2023-2024學(xué)年上學(xué)期期末八年級歷史試卷
- 專題06直線與圓的位置關(guān)系、圓與圓的位置關(guān)系(課時訓(xùn)練)原卷版
- 軍用裝備信息化融合與互聯(lián)
- 人才培養(yǎng)與團(tuán)隊建設(shè)計劃三篇
- 2024年急性胰腺炎急診診治專家共識解讀課件
- 六年級地方課程教案
評論
0/150
提交評論