版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
BISWorkingPapersNo1207
TheriseofgenerativeAI:modellingexposure,
substitution,andinequalityeffectsontheUSlabour
market
byRaphaelAuer,DavidK?pfer,Josef?véda
MonetaryandEconomicDepartment
September2024
JELclassification:E24,E51,G21,G28,J23,J24,M48,O30,O33
Keywords:Labourmarket,Artificialintelligence,Employment,Inequality,Automation,ChatGPT,GPT,LLM,Wage,Technology
BISWorkingPapersarewrittenbymembersoftheMonetaryandEconomicDepartmentoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.
ThispublicationisavailableontheBISwebsite
()
.
?BankforInternationalSettlements2024.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.
ISSN1020-0959(print)ISSN1682-7678(online)
1
TheriseofgenerativeAI:modellingexposure,substitution,and
inequalityeffectsontheUSlabourmarket*
RaphaelAuertDavidK¨opfer?Josefv′eda§
August21,2024
Abstract
Howexposedisthelabourmarkettoever-advancingAIcapabilities,towhatextentdoesthissubstitutehumanlabour,andhowwillitaffectinequality?Weaddressthesequestionsinasimulationof711USoccupationsclassifiedbytheimportanceandlevelofcognitiveskills.WebaseoursimulationsonthenotionthatAIcanonlyperformskillsthatarewithinitscapabilitiesandinvolvecomputerinteraction.AtlowAIcapabilities,7%ofskillsareexposedtoAIuniformlyacrossthewagespectrum.AtmoderateandhighAIcapabilities,17%and36%ofskillsareexposedonaverage,andupto45%inthehighestwagequartile.Examiningcomplementaryversussubstitution,wemodeltheimpactonsideversuscoreoccupationalskills.Forexample,AIcapableofbookkeepinghelpsdoctorswithadministrativework,freeinguptimeformedicalexaminations,butrisksthejobsofbookkeepers.WefindthatlowAIcapabilitiescomplementallworkers,assideskillsaresimplerthancoreskills.However,asAIcapabilitiesadvance,coreskillsinlower-wagejobsbecomeexposed,threateningsubstitutionandincreasedinequality.IncontrasttotheintuitivenotionthattheriseofAImayharmwhite-collarworkers,wefindthatthoseremainsafelongerastheircoreskillsarehardtoautomate.
JELcodes:E24,E51,G21,G28,J23,J24,M48,O30,O33
Keywords:Labourmarket,Artificialintelligence,Employment,Inequality,Automation,ChatGPT,GPT,LLM,Wage,Technology
*WethankRyanBanerjee,SebastianDoerr,FiorellaDeFiore,FernandoPerez-Cruz,AndrasValko,andseminarparticipantsattheBISforcommentsandsuggestions.WeacknowledgetheuseofGPT4foreditingand
asitanel.lti,erlcieoftheBIS.
?BankforInternationalSettlements,david.koepfer@§BankforInternationalSettlements,josef.sveda@
2
1Introduction
HowwilltheadvancementofgenerativeAIcomplementandsubstitutedifferentkindsofhumanlabour?RecentbreakthroughshaveenabledgenerativeAItomimichumancognitiveabilitiesinmanyfields,includingin“whitecollar”professionssuchaslaw,medicine,orscience.Ongoingadvancesandintegrationofthetechnologyintoday-to-dayapplicationsandworkflowsraiseurgentpolicyquestions.
UnderstandinghowthepotentialevolutionofAIwillcomplementorsubstitutehumanskillsisessentialforshapingpoliciestoensureequitablegrowthandemploymentstability.Theliter-
aturehasfocusedontheoccupation-levelimpactofcurrentAImodels,1
experimentalevidence
ofproductivityimpacts(Noy&Zhang,
2023;
Brynjolfssonetal.,
2023;
Pengetal.,
2023),and
thepotentialforcomplementarityandsubstitutioneffectsofAItechnologyataparticularstate
ofAIdevelopment(Pizzinellietal.,
2023;
Acemoglu&Restrepo,
2019,
2018c,a)
.Exceptforcertaintypesoffreelancers(seee.g.
Webb
2020),thebroaderimpactofAIcapabilitiesonthe
labourmarketyetremainstobedemonstrated.
Inthispaper,wetakeaforward-lookingapproach:weaskthequestionof“whatif”and
examinehowanAIofahypotheticallevelofcapabilitieswastoexpose2
differentoccupations.Toshedthefirstlightonthefutureimpact,webuildaparsimoniousbottom-upquantificationwithaspecialfocusonincomedistribution.
Ouranalysisproceedsintwosteps.Inthefirststep,webuildon
Eloundouetal.
(2023);
Feltenetal.
(2021);
Gmyreketal.
(2023);
Pizzinellietal.
(2023);
Acemoglu
(2024)andmodel
theexposuretothetechnologyasthecapabilitiesofAIincrease
.3
Inthesecondstep,weexaminehowthesedevelopmentscouldcomplementorsubstitutehumanlabourthroughthelensoftheirimpactoncoreandsideskills.
Inthefirststep,wearguethatthenear-termimpactofAIislimiteda)tocomputer-relatedinteractionsandb)bythedifficultyoftheskillsthatAIcansubstitutefor.Inthis,weonlyquantifytheimpactonskillsinvolvinginteractionwithacomputer.We,hence,donottakeintoaccounttheimpactofAIonroboticsthatmaysubstituteforphysicalworkorevensocialinteractions
.4
OurfirstdeparturefromtheliteratureistoemployanunderusedpartoftheO*NETdatabasethatclassifiesskillsbytheirdifficulty.Intuitively,anAIofacertaincapabilitylevelcanonlyperformtasksuptoacorrespondingskilllevel.AsthecapabilitiesofAIadvance,an
1Seei.e
.Webb
(2020);
Feltenetal.
(2021);
Tolanetal.
(2021);
Gmyreketal.
(2023);
Yang
(2022)
2Throughoutthepaper,weusetheterms“expose”and“exposure”inaneutralmanner,toimplythatsomepartsofaskill,task,oroccupationcouldbeenhanced,performed,orotherwisebeaffectedbyanAI.
3Similartotheseapproaches,wetakeapartialequilibriumperspectiveanddonottakeintoaccountthe
interplaybetweenskills,relativewages,humancapitalformationanddirectedtechnologicalchange(Acemoglu
&Restrepo,
2018c)
.
4Thisisinlinewith
Acemoglu
(2024),whoarguesthat“AIisnowhereclosetobeingabletoperformmost
manualorsocialtasks”,andwethusassumethatitcanonlyperformcomputerinteractions.
3
increasingshareofcognitiveskillswillhencebeexposedtothetechnology.5
WenestthisnotionofAIcapabilityandskilldifficultyinaquantitativesimulationof711USoccupationsfromtheO*NETdatabaseclassifiedbytheimportanceandtherequiredlevelofcognitiveskillsthatinvolvecomputerinteractions.ThemodelpredictsthatanAIcapableofsubstitutingforsimplecognitivetasks–suchastheminimalcommunicationskillsrequiredforatruckdriver–willexposearound7%ofallskills.AtlowlevelsofAIcapability,thiseffectholdsuniformlyacrosstheentirewagespectrum,butforheterogeneousreasons.Forlow-incomeworkers,asubstantialshareofcognitivecomputerskillsisexposed,buttheoverallshareoftimespentoncomputerinteractionislow.Forhigh-incomeworkers,onlyasmallshareofcognitivecomputerskillsisexposedbecauseofthelargerskillrequirement.However,theshareoftimespentusingsuchskillsishigher
.6
AsAIcapabilitiesincrease,weobserveaprofounddifferenceinoccupationalexposure:upto45%intheupperquartileofthewagedistributionareexposed,whereastheexposureofthelowestquartileisaround26%.
Whatdoesthismeanfortheincomedistribution?Wenotethatinlinewiththeliterature,“exposure”hasaneutralmeaninginthatsomepartsofaskill,task,orjobcouldbeperformedbyanAI.
Thismayleadtosubstitutionbutcouldalsocomplementviaincreasedproductivity.7
Toshedlightontheseissues,intheseconddeparturefromtheliteratureandstepofoursimulations,weexaminetheextenttowhichAImightcomplementorsubstitutehumanlabour.Wefocusonthedifferentialimpactoncoreversussideoccupationalskills,arguingthatAIwouldtendtocomplementoccupationswherevertheauxiliary(side)skillsnecessaryfortheprofessionarewithinitscapabilities.Forexample,ifAIcanorganisemeetings,billing,orbookkeepingforlawyers,medicaldoctors,orscientists,thisfreesuptimethatcanbespentoncoreactivitiesandthusincreasesproductivity.However,aprofessionmaybeatriskifthecoreactivityitselfcanbeperformedbytheAI.
ThisexercisesuggeststhatAImayinitiallycomplementallprofessions,assideskillsare
5Wetakenopositiononhowfasttheevolutionofthetechnologywillmaterialise.SomehavearguedthatAImaysoonhavedramaticimpactsonthelabourmarket(ie
Korinek&Juelfs
(2022))
.OthersarguethatfutureadvancementofAImaymaterialisemuchslowerthanexpected.Forexample,
Acemoglu
(2024)arguesthat
earlyevidenceisfromeasy-to-learntaskswithclearoutcomes(thatAIcanoptimisefor),whereasmoreprofoundproductivityimpactsinmoresubtlecontextsmaymaterialisemuchslower.
Perez-Cruz&Shin
(2024)arguethat
currentLLMsarelimitedintheirunderstandingofhumaninteractionandhigher-orderbeliefs.
6Fortheseexamples,“simplecognitivetasks”correspondtothoserequiringaskilllevelof2.0intheO*NETdatabase,forexample,theminimumsocialperceptivenessskillsrequiredforpiledriversortheminimumspeakingskillsrequiredforindustrialtruckoperators.“Mediumcognitivetasks”correspondtothoserequiringaskilllevelof3.0,forexample,problem-solvingskillsofmedicalappliancetechniciansortheoperationsmonitoringskillsofregisterednurses.“Highcognitivetasks”correspondtothoserequiringaskilllevelof4.0,forexample,thepersuasionskillsofpsychiatristsortheactivelisteningskillsofairtrafficcontrollers.
7Svanbergetal.
(2024)furthernotethat“exposure”doesnotmeanautomation:theysurveyworkerswith
“end-use”taskstogetasenseoftherequirementsforautomation,andsecond,theymodelthecostofamodelcapableofmeetingtherequirements.Focusingontheautomatabilityofvision,findthatonly23%ofoccupationsthatare“exposed”inthesenseof
Eloundouetal.
(2023);
Feltenetal.
(2021)couldtodaybeautomatedeco
-nomically.Wenotethatourmeasureofexposureismorenuancedthantheonein
Eloundouetal.
(2023);
Felten
etal.
(2021)aswerestricttheimpacttoskillsinvolvingcomputerinteractionandnotonlymodelwhetheraskill
inprinciplecouldbeautomatedbutalsowhetherthecapabilityleveloftheAIissufficientforsuchautomation.
4
generallylessdifficultthancoreskills.Forexample,anAIonlycapableofperformingsimplecognitivetaskshasnegligibleexposuretocoreskills,whereasit,onaverage,exposesaround12%ofsideskills.However,alreadyformoderateAIcapabilities,thereisdivergenceacrossthewagespectrum,withthecorecognitiveskillsofthelow-wageworkersbecomingroughlyasexposedtoAIastheirsideskills.Incontrast,theupperquartileofthewagedistributionstillseesnegligibleexposureofcoreskills(5%),whereassideskillsareexposedsubstantially(27%).
IfAIcapabilitiesarehigh,around25%ofbothsideandcoreskillsofthelowestquartileofthewagedistributionareexposed.Incontrast,only20%ofthecorebutastaggering62%ofthesideskillsofthehighestquartileoftheincomedistributionbecomeexposed.
Onbalance,ourmodellingoftheimpactonsideandcoreskillshencereversesthenotionthat
generativeAImightdecreaseinequalityinthelabourmarket(Noy&Zhang,
2023;
Brynjolfsson
etal.,
2023)
.Despitebeingatechnologythatisexposingwhite-collarjobsmoreintensively,thiseffectisfocusedonthesideskillsoftheirprofessions,whilethecoreskillsarenotinreach
.8
Incontrast,acapableAIwillalsoexposethecoreskillsoflower-incomeworkers,thusthreateningsubstitutionandwideninginequality.
Thebalanceofthispaperisasfollows:werelateourapproachtotheliteratureinSection
Section2.
Next,
Section3
presentsthemethodologydescribingtheevolutionaryimpactofever-improvingAIonoccupations.ItalsoservesasanAIexposuredependentonAI’scapabilities.Thereafter,wesplittheAIexposurebasedoncoreandsideskills
Section4
thatarethenusedtoidentifycomplementarityandsubstitutionaleffectsforindividualoccupations.
Section5
presentsadditionalrobustnessanalysis,while
Section6
concludes.
2Literaturereview
Historically,technologicaladvancementshavebeenmetwithbothoptimismandconcernre-
gardingtheirimplicationsforthelabourmarket(Bessen,
2016)
.TheadventofAIandmachinelearningtechnologies,ingeneral,hasintensifiedthesedebates,withresearchersseekingtoun-derstandhowthesenewtoolscanreshapethelabourmarketandhowtheimpactcandiffer
fromprevioustechnologicaladvancementsinrobotisationorcomputerisation(Autor,
2015)
.
SeveralrecentstudieshavedirectlyaddressedthepotentialofthelatestadvancementsinAItosignificantlyimpactthecurrentstructureofthelabourmarket.
Brynjolfssonetal.
(2018)
arguethatmostoccupationsintheUSincludeatleastsometasksthataresuitableformachinelearningapplications,and
Eloundouetal.
(2023)suggeststhat80%oftheworkforcecouldbe
affectedbyGenerativePredictiveTransformers(GPTs).Whiletheseestimatesarestaggering,
Arntzetal.
(2016)arguethattheactualvulnerabilityofjobstoautomationislowerwhen
consideringthenuancedskillswithinoccupations.Nonetheless,theproliferationofthelatestLLMsseemstobenon-negligent;
Eloundouetal.
(2023)furtherfind19%ofUSworkersinthe
8Ofcourse,oncethecapabilityoftheAIbecomesextremelyhighsuchthatallskillsarewithinreach,thiseffectabates,andallcognitiveworkersareindangerofreplacement.
5
USmayseeatleasthalfoftheirskillsimpactedand
Hatziusetal.
(2023)finds25%ofcurrent
workskillsinUSautomatable.
CurrentAIcapabilities,insomeinstances,fallshortofprofoundreasoningskills(Perez-Cruz
&Shin,
2024)
.However,animportantissueregardshowthefutureevolutionofAIcapabilitiescanenhancelabourproductivityorcrowdoutworkers.RecentexperimentswiththelatestgenerationofAIshowthatitcanhaveapositiveeffectinspecificoccupationswhilereducingdifferencesamongworkerswithvaryingexperiencelevels.
Noy&Zhang
(2023)demonstrated
thattheuseofChatGPTsignificantlyincreasesaverageproductivitymeasuredbytimespentontasksandreducesdifferencesbetweenhigh-andlow-skilledworkers.
Brynjolfssonetal.
(2023)studiedtheintroductionofgenAIassistanttothecustomersupportagentsandfounda
significantlyhighernumberofcompletedtasksthatweremorepronouncedfornoviceandlow-skilledworkers.
Pengetal.
(2023)suggestscoderswithaccesstogenAIarecapableofcompleting
coding-orientedtasksupto55%faster.AItoolscanalsoserveasthetooltodiscoverpotential
improvementsinbusinesssystems(Cockburnetal.,
2018;
Chengetal.,
2022)
.
However,anincreaseinlabourproductivitymeansthatlesshumancapitalisneededto
maintainthesameoutput,whichcouldleadtolayoffsorwagereductions(Acemoglu&Restrepo,
2020)
.Inthiscontext,
Frey&Osborne
(2017)predictedthatupto47%ofUSemploymentis
athighriskofcomputerisation.
Arntzetal.
(2016)howeverusesadifferentmethodologyand
estimatesanimpactofonly9%.Gmyreketal.
(2023)findthatgenAIcouldautomate5.1%of
totalemploymentinhigh-incomecountries,whereaslow-incomecountriesarenotsosusceptible.Thepotentialforaugmentationissimilarlydistributedacrosscountriesrelativetotheirincomelevels,althoughthepotentialtoaugmentismuchlarger(aroundfourtofivetimes).
Noy
&Zhang
(2023)claimthatChatGPTmostlysubstitutesforworkereffortratherthanpurely
complementingworkerskills.
Yang
(2022)alsoshowsthatAIcanpositivelyaffectproductivity
andemploymentbutadverselyaffectstheemploymentoflessknowledgeableworkers.Some
studiesadditionallydebatetheeffectsrelativetogender(Eloundouetal.,
2023;
Webb,
2020;
Gmyreketal.,
2023;
Aldasoroetal.,
2024)
.
Historicalexperiencewithinnovationshowsthatinthelong-term,thedisplacementcanbe
offsetbyanincreaseintherangeofgoodsandservicesoffered,see(Autor,
2015;
Acemoglu
&Restrepo,
2019)
.Forexample,
Bessen
(2016)showsUSlabourdemandhasincreasedfaster
incomputerisedoccupationssince1980,althoughthecomputerisationledtosubstitutionforotheroccupations,shiftingemploymentandrequiringnewskills.
Acemogluetal.
(2022)find
increasingdemandinAI-exposedoccupationsintheUSsince2015.AutomatisationinJapan
andtheUSgeneratedcostsavings,allowinglargeroutputineconomy(Adachietal.,
2024;
Dekle,
2020;
Acemoglu&Restrepo,
2020)thatoutweighedthedisplacementeffectsofhuman
labour.
Yang
(2022)findsthatAItechnologyispositivelyassociatedwithproductivityand
employmentinTaiwan’selectronicsindustryforthe2002–2018period.
Acemoglu&Restrepo
(2019),
Acemoglu&Restrepo
(2018a)and
Acemoglu&Restrepo
(2018c)thenfocusdirectlyon
thedynamicsofdisplacementandreinstatementoflabourduetoautomation.Basedondata
6
fromtheUSsinceWorldWarII,
Acemoglu&Restrepo
(2019)claimthatdisplacementeffects
occurintuitively,buttheyarecounterbalancedbythecreationofnewtasksinwhichlabourhasacomparativeadvantage.Thesethenchangethetaskcontentofproductioninfavouroflabourbecauseofareinstatementeffectfollowedbyariseinthelabourshareandlabourdemand.
Acemoglu&Restrepo
(2019)pointoutthatthesuccessofreinstatementisnotautomatic
.Itratherdependsonadditionalvariablessuchasthesupplyofnewskills,demographics,orlabourmarketinstitutions
.9
Althoughpreviousinnovationsinautomatisationandcomputerisation,onaverage,broughteconomicgrowth,theystillreshapedthelabourmarketandintroducednewchallengesinre-gionallabourmarketstructuresthataffectedlabourdistributionacrosstheskilldistributionofmarkets.
Autor
(2019)documentstheseeffectsusingUSdatashowingthatautomation(to
-getherwithinternationaltrade)ledtotheeliminationofthebulkofnon-collegeoccupations,furtherleadingtodisproportionatepolarisationofurbanlabourmarkets.
Acemoglu&Restrepo
(2022)documentthatbetween50%and70%ofchangesintheUSwagestructureoverthelast
fourdecadesareaccountedforbyworkersspecialisedinroutinetasksinindustriesexperiencingrapidautomation.
Acemoglu&Restrepo
(2020)showindustrialrobotadoptionintheUnited
Stateswasnegativelycorrelatedwithemploymentandwages.Theseexamplespinpointtheimportanceofunderstandingthepotentialeffectsoftechnologicaladvancementstonavigateasmoothtransitiontowardsanewstructureofthelabourmarket.
ThequestionremainshowmuchthenewwaveofautomationwithAIiscomparabletoprevi-oustechnologicaladvancements.Previously,automationexposedpredominantlymanuallabourthroughtheinventionofmachinesandrobots.Thetransitionprocesstorobot-drivenproduc-
tion,therefore,affectedatitsfirststageratherlower-skilledlabour(Acemoglu&Restrepo,
2018b)
.EvolvingAIchallenges,however,cognitivetasksandskillsandcreatesapotentialtoaffectdifferentoccupationsbyeithercomplementingorsubstitutingthem.Earlierworkby
Autor&Dorn
(2013)suggeststhatlow-wageoccupationsfacedhighersubstitutiondueto
computerisation.Incontrast,high-wageoccupationswerecomplementedbytechnology.
Webb
(2020)thenfocusesonthenewerinnovationinAIandstatesitisdirectedathigh-skilledtasks,
effectivelyaffectingthehigher-wagequantiles.Asimilarconclusionisreachedby
Eloundouetal.
(2023)and
Pizzinellietal.
(2023)
.
Webb
(2020)arguesthattheimpactofAIisdifferentfrom
theeffectsofsoftwareinnovation,whichexposedmid-wageoccupations(inlinewith
Michaels
etal.
(2014))
.
Pizzinellietal.
(2023)emphasisehighcomplementarityintheuppertailofthe
earningsdistributionbyAI,leadingtoaproductivityboostinsteadofjobdisplacements.TheeffectsofAIalsodiffergeographically.
Pizzinellietal.
(2023);
Gmyreketal.
(2023);
Albanesi
etal.
(2023)showthatmoredevelopedcountriesaremoreexposedtoAIastheirlabourmarkets
aremoreorientedtocognitivetasks.However,asAIsignificantlyprogresses,researchalsoneeds
toaccountfortheevolutionoftechnologytofullyunderstanditspotentialeffects.Examining
9Inasimilarvein,
Aldasoroetal.
(2024)showinageneralequilibriummodelthattheoutputeffectsofAI
mayprimarilyariseviatheindirectimpactondemandandassociatedchangesinrelativepricesratherthanviathedirectinitialproductivityboostfromAIadoption.
7
theimpactofdevelopingAIthroughthelensofwagedistributionseemstobeadvantageousto
formulatetargetedpolicyresponses(Furman&Seamans,
2019)
.AstheadvancementsinAItechnologyprogress,theirinteractionmightchangerapidly.
3MeasuringAIexposure:dataandmethodology
PredictingtheimpactofAIonthelabourmarketischallenging,astheintegrationofthetechnologyintoreal-lifeapplicationsisstillinitsinfancy,andonlysomesyntheticbenchmarksonthepotentialqualityandefficiencyimprovementsoncertainaspectsofworkareavailable(seei.e.
Tolanetal.
(2021);
Pengetal.
(2023);
Noy&Zhang
(2023))
.Particularly,therapidlyevolvingcapabilitiesofAIareamajorsourceofuncertainty.Inthefaceoftheseuncertainties,weconstructaparsimoniousbottom-upmodelcentredonan“AIcapability”parameter,whichallowsustosimulatetheeffectsofevolvingAI.Themodelisbuiltontheskillandoccupationlevelandlateraggregatedtotheindustryorwage-quantilelevel.
Inthissection,weshowhowweconstructtheAIShareAutomatability(AISA)IndexthatdependsonthesophisticationoftheAI(definedas“AIcapability”above).Thisindexrestsontwomainassumptions:
1.Intheshorttomediumterm,automationwillaffectoccupationalactivitieswithcomputerinteractionasopposedtosocialinteractionsorphysicallabour.
2.Theskillsrequiredforperformingtheoccupationsareheterogeneousintheirdifficultylevel.Foraskilltobeimpactedinacertainoccupation,itsdifficultylevelneedstobewithinthecapabilitiesoftheAI.
WeutilisedatafromO*NETversion27.2andthe2022OccupationalEmploymentandWageStatistics(OEWS)SurveyfromtheUSBureauofLaborStatistics.Thesedatasetsdetailaround800differentoccupations(ofwhichwecanuse711afterjoiningacrosstheskillstablesandemploymentstatistics)across22industries,providingaverageincome,employmentnumbers,andratingsforupto35cognitiveskillsforeachoccupationintermsofrequiredskilllevel(1-6)andimportance(1-5).
Furthermore,thedataincludesdetailedtaskdescriptions10
foreachoccupation(onaverage,wehave24taskdescriptionsforeachofthe711occupations).
Inthedescriptionofourmodel,wewillusesubscriptstodenotethedifferentlevelsofaggregation:thelowestlevelsfortheskill,ofortheoccupationandthehighestaggregationlevelsifortheindustryorwforthewagequantile.TheskilllevelLo,sisdistinctforagivenoccupationoandskills.Forinstance,theoccupationofBiophysicistsrequiresalevelof4.75intheskillmathematics,whiletheimportanceofthisskillIo,sis3.88.
10/dictionary/21.0/text/task_statements.html
(releasenumber21.0)
8
3.1OnlycomputerinteractionisautomatablewithAI
Inthispaper,weonlyexaminetheimpactofAIonautomatingtasksthatrequireskillsinvolvingcomputerinteraction.Jobsperformedoncomputersare,intheshortandmediumrun,muchmorelikelytoincorporateAIapplicationscomparedtothoseinvolvingphysicallabour.Weacknowledgethatalsophysicallabourmay,inthefuture,bepronetoautomationthroughimprovedmachinesandrobotics.However,modellingtheimpactofsuchdevelopmentsisoutofthescopeoftheanalysisathand.Similarly,weexpectsocialinteractiontorequirehigherdegreesofsocialacceptancebeforewidespreadautomationmaterialises.Certainly,cost-effectivenessandimprovedsocialskillsoftheAIwillspeeduptheprocess,yet,asforphysicallabour,weexpectlongertimescales.
Weconstructameasureoftheshareofthetimespentoncomputerinteractionsbasedonabout19,000detailedtaskdescriptionsavailableintheO*NETdatabase.Basedonthede-scriptionsofeachoccupation,weinstructedGPT-4toestimatethetimespentwithi)computerinteraction,ii)socialinteraction,andiii)physicallabour.Theexactpromptisshowninthe
BoxA1,andoneexampleoftaskdescriptionisprovidedtotheChatGPT-4in
TableA1.
Notethatcomputerinteractionrepresentsworkingonacomputerthatcommonlydoesnotincludecommunicationviae-meetingsorothersimilarsocialinteraction.
Ingeneral,ChatGPT-4provesveryhighcomparabilitywithconventionalhuman-basedpro-ceduresforcategorisationpurposes.
Eloundouetal.
(2023)usesbothapproaches(human
-andGPT4-based)todirectlyidentifyoccupationalAIexposure,findingaveryhighcorrelationbe-tweenhumanassessmentsandGPT4-basedself-assessments
.11
Gmyreketal.
(2023)follows
theirapproachemp
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園園長個人工作計劃
- 中學生自我評價15篇
- 愛崗敬業(yè)演講稿范文集錦6篇
- 大一新生自我鑒定15篇
- 學期班務工作計劃
- 初中生新學期開學典禮演講稿合集6篇
- 大學課前三分鐘演講稿(合集15篇)
- 《廣告經典案例》課件
- 幼兒園大班老師的綜合教育筆記合集6篇
- 金錢的詩句李白
- 工程分包管理制度
- GB/T 9452-2023熱處理爐有效加熱區(qū)測定方法
- 肺炎支原體肺炎診治專家共識
- 藥物化學(第七版)(全套課件1364P)
- 中國近現代史人物陳獨秀
- 酒店業(yè)輕資產運營模式案例研究
- 建筑師《建筑工程經濟》習題(E)
- 《卓有成效的管理者》讀書分享
- 優(yōu)秀管理者評選方案
- 廣州中醫(yī)藥大學2021學年第一學期19級護理學專業(yè)《災難護理學》期末考試試題
- 全過程工程造價跟蹤審計服務方案
評論
0/150
提交評論