




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北名師聯(lián)盟2025屆高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),滿足,則的取值范圍是()A. B. C. D.2.設(shè),滿足約束條件,若的最大值為,則的展開式中項(xiàng)的系數(shù)為()A.60 B.80 C.90 D.1203.已知α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件4.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.復(fù)數(shù)的模為().A. B.1 C.2 D.6.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.7.拋物線的焦點(diǎn)為,則經(jīng)過點(diǎn)與點(diǎn)且與拋物線的準(zhǔn)線相切的圓的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.0個(gè) D.無數(shù)個(gè)8.設(shè)集合(為實(shí)數(shù)集),,,則()A. B. C. D.9.的展開式中的系數(shù)為()A.5 B.10 C.20 D.3010.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.11.一個(gè)陶瓷圓盤的半徑為,中間有一個(gè)邊長(zhǎng)為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計(jì)圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.14712.已知集合A={x|x<1},B={x|},則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正四棱柱的底面邊長(zhǎng)為,側(cè)面的對(duì)角線長(zhǎng)是,則這個(gè)正四棱柱的體積是____.14.在等差數(shù)列()中,若,,則的值是______.15.某地區(qū)教育主管部門為了對(duì)該地區(qū)模擬考試成績(jī)進(jìn)行分析,隨機(jī)抽取了150分到450分之間的1000名學(xué)生的成績(jī),并根據(jù)這1000名學(xué)生的成績(jī)畫出樣本的頻率分布直方圖(如圖),則成績(jī)?cè)赱250,400)內(nèi)的學(xué)生共有____人.16.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時(shí),求的零點(diǎn);(2)當(dāng)時(shí),證明:.18.(12分)如圖所示,在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.19.(12分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時(shí),用列舉法表示集合;(Ⅱ)當(dāng)時(shí),,且集合滿足下列條件:①對(duì)任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補(bǔ)集);(ⅱ)為一個(gè)定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.20.(12分)2019年入冬時(shí)節(jié),長(zhǎng)春市民為了迎接2022年北京冬奧會(huì),增強(qiáng)身體素質(zhì),積極開展冰上體育鍛煉.現(xiàn)從速滑項(xiàng)目中隨機(jī)選出100名參與者,并由專業(yè)的評(píng)估機(jī)構(gòu)對(duì)他們的鍛煉成果進(jìn)行評(píng)估打分(滿分為100分)并且認(rèn)為評(píng)分不低于80分的參與者擅長(zhǎng)冰上運(yùn)動(dòng),得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長(zhǎng)冰上運(yùn)動(dòng)進(jìn)行統(tǒng)計(jì),請(qǐng)將下列列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率在不超過0.01的前提下認(rèn)為擅長(zhǎng)冰上運(yùn)動(dòng)與性別有關(guān)系?擅長(zhǎng)不擅長(zhǎng)合計(jì)男性30女性50合計(jì)1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)21.(12分)如圖,在正三棱柱中,,,分別為,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.22.(10分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記與在第一、第四象限的公共點(diǎn)分別為、.(1)若,且恰為的左焦點(diǎn),求的兩條漸近線的方程;(2)若,且,求實(shí)數(shù)的值;(3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標(biāo)函數(shù)在點(diǎn)處取得最小值,故目標(biāo)函數(shù)的最小值為,故的取值范圍是.故選:D.【點(diǎn)睛】本題主要考查了線性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問題,屬于基礎(chǔ)題.2、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項(xiàng)式定理計(jì)算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時(shí),的最大值為,故.展開式的通項(xiàng)為:,取得到項(xiàng)的系數(shù)為:.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃求最值,二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.3、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷.解:根據(jù)題意,由于α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個(gè)平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點(diǎn):必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.4、C【解析】
化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.5、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.6、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計(jì)算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長(zhǎng)為,如圖:的外接圓的圓心為斜邊的中點(diǎn),,且平面,,的中點(diǎn)為外接球的球心,半徑,外接球表面積.故選:A【點(diǎn)睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.7、B【解析】
圓心在的中垂線上,經(jīng)過點(diǎn),且與相切的圓的圓心到準(zhǔn)線的距離與到焦點(diǎn)的距離相等,圓心在拋物線上,直線與拋物線交于2個(gè)點(diǎn),得到2個(gè)圓.【詳解】因?yàn)辄c(diǎn)在拋物線上,又焦點(diǎn),,由拋物線的定義知,過點(diǎn)、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點(diǎn),這樣的交點(diǎn)共有2個(gè),故過點(diǎn)、且與相切的圓的不同情況種數(shù)是2種.故選:.【點(diǎn)睛】本題主要考查拋物線的簡(jiǎn)單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.8、A【解析】
根據(jù)集合交集與補(bǔ)集運(yùn)算,即可求得.【詳解】集合,,所以所以故選:A【點(diǎn)睛】本題考查了集合交集與補(bǔ)集的混合運(yùn)算,屬于基礎(chǔ)題.9、C【解析】
由知,展開式中項(xiàng)有兩項(xiàng),一項(xiàng)是中的項(xiàng),另一項(xiàng)是與中含x的項(xiàng)乘積構(gòu)成.【詳解】由已知,,因?yàn)檎归_式的通項(xiàng)為,所以展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查求二項(xiàng)式定理展開式中的特定項(xiàng),解決這類問題要注意通項(xiàng)公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.10、B【解析】
依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱,定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).11、B【解析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計(jì)算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點(diǎn)睛】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題12、A【解析】∵集合∴∵集合∴,故選A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】Aa設(shè)正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.14、-15【解析】
是等差數(shù)列,則有,可得的值,再由可得,計(jì)算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計(jì)算.15、750【解析】因?yàn)?.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.00516、【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進(jìn)而可寫出半球的半徑與四棱錐體積的關(guān)系,進(jìn)而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解析】
當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計(jì)算即為導(dǎo)函數(shù)的零點(diǎn);
當(dāng)時(shí),分類討論x的范圍,可令新函數(shù),計(jì)算新函數(shù)的最值可證明.【詳解】(1)的定義域?yàn)楫?dāng)時(shí),,,易知為上的增函數(shù),又,所以是的唯一零點(diǎn);(2)證明:當(dāng)時(shí),,①若,則,所以成立,②若,設(shè),則,令,則,因?yàn)?,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點(diǎn)的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.18、(1)見解析(2)(文)(理)【解析】
(1)證明:取PD中點(diǎn)G,連結(jié)GF、AG,∵GF為△PDC的中位線,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四邊形,則EF∥AG,又EF不在平面PAD內(nèi),AG在平面PAD內(nèi),∴EF∥面PAD;(2)(文)解:取AD中點(diǎn)O,連結(jié)PO,∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,又PC為面ABCD斜線,F(xiàn)為PC中點(diǎn),∴F到面ABCD距離,故;(理)連OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,則∠MEB+∠MBE=90°,即OM⊥EC.連PM,又由(2)知PO⊥EC,可得EC⊥平面POM,則PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值為.【方法點(diǎn)晴】本題主要考查線面平行的判定定理、二面角的求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.本題(1)是就是利用方法①證明的.19、(Ⅰ);(Ⅱ)(?。┰斠娊馕觯áⅲ┰斠娊馕?(Ⅲ)詳見解析.【解析】
(Ⅰ)當(dāng),時(shí),,,,,,.即可得出.(Ⅱ)(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設(shè),,,,其中,,,2,,.,可得,通過求和即可證明結(jié)論.【詳解】(Ⅰ)解:當(dāng),時(shí),,,,,..(Ⅱ)證明:(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則,而,與已知對(duì)任意,矛盾.因此有.(ii)..,為定值.(iii)由設(shè),,,,其中,,,2,,.,..【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于難題.20、(1)(2)填表見解析;不能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為擅長(zhǎng)冰上運(yùn)動(dòng)與性別有關(guān)系【解析】
(1)利用頻率分布直方圖小長(zhǎng)方形的面積和為列方程,解方程求得的值.(2)根據(jù)表格數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷不能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為擅長(zhǎng)冰上運(yùn)動(dòng)與性別有關(guān)系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長(zhǎng)冰上運(yùn)動(dòng)的人數(shù)為.完善列聯(lián)表如下:擅長(zhǎng)不擅長(zhǎng)合計(jì)男性203050女性104050合計(jì)3070100,對(duì)照表格可知,,不能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為擅長(zhǎng)冰上運(yùn)動(dòng)與性別有關(guān)系.【點(diǎn)睛】本小題主要考查根據(jù)頻率分布直方圖計(jì)算小長(zhǎng)方形的高,考查列聯(lián)表獨(dú)立性檢驗(yàn),屬于基礎(chǔ)題.21、(1)證明見詳解;(2).【解析】
(1)取中點(diǎn)為,通過證明//,進(jìn)而證明線面平行;(2)取中點(diǎn)為,以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求得兩個(gè)平面的法向量,用向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 焊接工程師資格考試政策解讀試題及答案
- 全流程生產(chǎn)的關(guān)鍵技術(shù)考查試題及答案
- 2025年中國(guó)抗蝕耐磨膠泥市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)扁嘴噴頭數(shù)據(jù)監(jiān)測(cè)報(bào)告
- 2025年中國(guó)微型犁耕機(jī)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024焊接行業(yè)資格證書八大考點(diǎn)及答案
- 智慧交通科技創(chuàng)新的典型案例分析試題及答案
- 2024年CAD 工程師認(rèn)證考試的多種復(fù)習(xí)方式試題及答案
- 2025年中國(guó)平磨式顆粒飼料機(jī)市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)干李市場(chǎng)調(diào)查研究報(bào)告
- 自身免疫性腦炎
- 醫(yī)院質(zhì)控科工作質(zhì)量考核指標(biāo)
- CRPS電源設(shè)計(jì)向?qū)?CRPS Design Guide r-2017
- GB/T 9345.1-2008塑料灰分的測(cè)定第1部分:通用方法
- GB/T 4937.22-2018半導(dǎo)體器件機(jī)械和氣候試驗(yàn)方法第22部分:鍵合強(qiáng)度
- GB/T 3452.2-2007液壓氣動(dòng)用O形橡膠密封圈第2部分:外觀質(zhì)量檢驗(yàn)規(guī)范
- 煤礦從業(yè)人員安全培訓(xùn)考試題庫(kù)(附答案)
- 第十章-國(guó)際政治與世界格局-(《政治學(xué)概論》課件)
- 2023年法律職業(yè)資格考試歷年真題精選合集
- 濾毒罐使用說明書
- 如何上好一節(jié)思政課綜述課件
評(píng)論
0/150
提交評(píng)論