天津廣播影視職業(yè)學院《信息圖形設計》2023-2024學年第一學期期末試卷_第1頁
天津廣播影視職業(yè)學院《信息圖形設計》2023-2024學年第一學期期末試卷_第2頁
天津廣播影視職業(yè)學院《信息圖形設計》2023-2024學年第一學期期末試卷_第3頁
天津廣播影視職業(yè)學院《信息圖形設計》2023-2024學年第一學期期末試卷_第4頁
天津廣播影視職業(yè)學院《信息圖形設計》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁天津廣播影視職業(yè)學院

《信息圖形設計》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分類是計算機視覺的基本任務之一。假設要對大量的動物圖像進行分類,將其分為貓、狗、兔子等類別。在進行圖像分類時,以下關于特征提取的描述,正確的是:()A.手工設計的特征,如顏色直方圖、紋理特征等,總是比自動學習的特征更有效B.深度學習中的卷積神經(jīng)網(wǎng)絡能夠自動學習到具有判別性的圖像特征,無需人工干預C.特征提取的好壞對圖像分類的結果影響不大,主要取決于分類器的性能D.為了提高分類準確率,應該盡可能多地提取圖像的各種特征,而不考慮特征的冗余性2、在計算機視覺的動作識別任務中,識別視頻中的人物動作。假設要識別一段舞蹈視頻中的動作,以下關于動作識別方法的描述,哪一項是不正確的?()A.可以提取視頻中的時空特征,如光流和運動軌跡,來描述動作B.基于深度學習的方法,如3D卷積神經(jīng)網(wǎng)絡,能夠直接處理視頻數(shù)據(jù),進行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復雜的、個性化的動作無法準確識別3、計算機視覺在無人駕駛中的應用至關重要。假設要通過車載攝像頭識別道路上的交通標志和標線,以下關于應對復雜環(huán)境變化的策略,哪一項是不正確的?()A.利用多模態(tài)數(shù)據(jù)融合,如結合攝像頭和激光雷達的信息B.定期更新模型,適應新出現(xiàn)的交通標志和標線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對不同天氣和光照條件下的數(shù)據(jù)進行增強訓練4、視頻理解是計算機視覺中的一個具有挑戰(zhàn)性的任務。以下關于視頻理解的敘述,不準確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時間關系B.循環(huán)神經(jīng)網(wǎng)絡(RNN)和長短期記憶網(wǎng)絡(LSTM)在處理視頻序列數(shù)據(jù)時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應用前景D.目前的視頻理解技術已經(jīng)能夠完全理解復雜場景下的視頻內(nèi)容,不存在任何挑戰(zhàn)5、計算機視覺在人臉識別領域取得了顯著進展。假設要開發(fā)一個人臉識別系統(tǒng),以下關于人臉識別技術的描述,哪一項是不正確的?()A.可以通過提取人臉的幾何特征、紋理特征或深度學習特征進行識別B.人臉識別系統(tǒng)通常需要進行活體檢測,以防止使用照片或視頻等欺詐手段C.大規(guī)模的人臉數(shù)據(jù)集和深度學習模型的結合,大大提高了人臉識別的準確率D.人臉識別技術在任何光照條件、姿態(tài)變化和表情變化下都能準確識別,不受這些因素的影響6、計算機視覺中的目標跟蹤是指在視頻序列中持續(xù)跟蹤特定的目標。以下關于目標跟蹤的敘述,不正確的是()A.目標跟蹤可以基于特征匹配、濾波算法或深度學習方法來實現(xiàn)B.目標的外觀變化、遮擋和背景干擾等因素會給目標跟蹤帶來挑戰(zhàn)C.目標跟蹤在智能監(jiān)控、人機交互和自動駕駛等領域有著廣泛的應用D.目標跟蹤算法能夠在任何情況下都準確地跟蹤目標,不受復雜環(huán)境的影響7、在計算機視覺的圖像分類任務中,假設要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠遠少于其他類別。以下關于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會對結果產(chǎn)生明顯影響B(tài).過采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導致過擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會丟失部分有用信息D.類別不均衡問題無法通過數(shù)據(jù)處理方法解決,只能通過改進分類算法來應對8、計算機視覺在工業(yè)檢測中的應用可以提高產(chǎn)品質量和生產(chǎn)效率。假設一個工廠需要檢測生產(chǎn)線上的零件是否存在缺陷。以下關于工業(yè)檢測中的計算機視覺的描述,哪一項是不準確的?()A.能夠快速準確地檢測出零件的表面缺陷、尺寸偏差等問題B.可以通過機器視覺系統(tǒng)對零件進行自動分類和篩選C.工業(yè)檢測中的計算機視覺系統(tǒng)需要高度的穩(wěn)定性和可靠性,對環(huán)境變化不敏感D.計算機視覺在工業(yè)檢測中的應用已經(jīng)非常成熟,不需要人工干預和校驗9、在計算機視覺的人臉識別任務中,需要應對姿態(tài)、表情和光照等變化。假設要構建一個能夠在不同環(huán)境下準確識別人臉的系統(tǒng),以下哪種人臉識別方法在處理這些變化時具有更高的準確性和魯棒性?()A.基于特征點的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別D.基于幾何形狀的人臉識別10、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設要估計一段視頻中物體的運動速度和方向,以下關于光流估計方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計方法在復雜場景中能夠準確計算光流B.深度學習中的光流估計網(wǎng)絡不需要大量的標注數(shù)據(jù)進行訓練C.光流估計的結果不受圖像噪聲和模糊的影響D.結合時空信息的深度學習光流估計方法能夠提高估計的準確性和魯棒性11、計算機視覺中的語義分割任務旨在為圖像中的每個像素分配一個類別標簽。假設要對醫(yī)學圖像中的病變區(qū)域進行精確分割,以下哪種技術可能對提高分割精度有較大幫助?()A.使用更深的卷積神經(jīng)網(wǎng)絡架構B.引入多尺度特征融合C.增加訓練數(shù)據(jù)中的噪聲D.減少網(wǎng)絡中的參數(shù)數(shù)量12、在計算機視覺的視覺跟蹤任務中,目標在運動過程中可能會發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準確性,以下哪種策略可能是有效的?()A.模型更新機制B.多特征融合C.抗遮擋處理D.以上都是13、計算機視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗知識進行關聯(lián)和解釋B.知識圖譜可以為語義理解提供豐富的語義信息和關系C.語義理解在圖像描述生成、問答系統(tǒng)等任務中發(fā)揮著重要作用D.語義理解已經(jīng)達到了非常完美的程度,能夠準確理解任何復雜的圖像或視頻內(nèi)容14、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的邊界優(yōu)化?()A.條件隨機場B.全連接條件隨機場C.深度學習D.以上都是15、在計算機視覺中,目標檢測是一項重要任務。假設要在一張包含多種物體的圖像中準確檢測出汽車的位置和類別。以下關于目標檢測算法的描述,正確的是:()A.傳統(tǒng)的基于特征提取和分類器的方法在復雜場景下檢測效果優(yōu)于深度學習方法B.深度學習中的FasterR-CNN算法通過生成候選區(qū)域和分類回歸,能夠實現(xiàn)高精度的目標檢測C.目標檢測算法只關注物體的外觀特征,不考慮物體之間的空間關系D.所有的目標檢測算法對于小目標的檢測都具有同樣出色的性能16、在計算機視覺的應用中,人臉識別是一個常見的任務。假設一個公司要建立一個門禁系統(tǒng),通過人臉識別來允許員工進入。為了提高人臉識別的準確性和魯棒性,以下哪種技術通常會被采用?()A.基于幾何特征的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別,結合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識別17、在目標檢測中,YOLO(YouOnlyLookOnce)算法的特點是()A.檢測速度快B.檢測精度高C.適用于小目標檢測D.對遮擋不敏感18、在計算機視覺的圖像風格遷移任務中,將一張圖像的風格應用到另一張圖像上。假設要將一幅油畫的風格遷移到一張照片上,以下關于圖像風格遷移方法的描述,正確的是:()A.基于手工特征提取和風格轉換的方法能夠實現(xiàn)自然逼真的風格遷移B.深度學習中的生成對抗網(wǎng)絡(GAN)在風格遷移中無法生成多樣化的風格效果C.圖像的內(nèi)容和風格可以完全獨立地進行處理,互不影響D.考慮圖像的局部和全局特征以及語義信息能夠提升風格遷移的質量19、計算機視覺在體育賽事分析中的應用可以提供更多的數(shù)據(jù)和見解。假設要分析一場足球比賽中球員的跑動軌跡和動作。以下關于計算機視覺在體育賽事中的描述,哪一項是不準確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠對球員的動作進行分類,如傳球、射門和防守C.計算機視覺在體育賽事分析中的結果可以直接作為裁判的判罰依據(jù),無需人工復查D.可以結合多攝像頭的信息,獲取更全面和準確的比賽數(shù)據(jù)20、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設我們要分析一個視頻中物體的運動速度和方向,以下哪種光流估計算法在復雜場景下能夠提供更準確的結果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法21、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優(yōu)勢在于()A.去噪效果好B.保持圖像細節(jié)C.計算效率高D.以上都是22、在計算機視覺的目標跟蹤任務中,需要持續(xù)跟蹤一個或多個運動目標。假設要跟蹤一個在操場上跑步的人。以下關于目標跟蹤算法的描述,哪一項是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標的相似特征來實現(xiàn)跟蹤B.深度學習中的相關濾波算法能夠快速準確地跟蹤目標,適應目標的外觀變化C.目標跟蹤算法能夠在目標被遮擋或短暫消失后,仍然準確地恢復跟蹤D.無論目標的運動速度和軌跡如何復雜,目標跟蹤算法都能完美地跟蹤23、在計算機視覺的三維重建任務中,假設要從一組不同角度拍攝的二維圖像中重建出物體的三維模型。這些圖像可能存在噪聲和拍攝誤差。為了獲得準確的三維重建結果,以下哪種技術是重要的?()A.基于立體視覺的方法,通過匹配不同圖像中的對應點B.直接使用二維圖像的平均信息來估計三維形狀C.忽略圖像中的噪聲和誤差,進行簡單的重建D.隨機生成三維模型,然后與二維圖像進行匹配24、計算機視覺中的表情識別旨在識別圖像或視頻中人物的表情。假設要在一個情感分析系統(tǒng)中準確識別表情,以下關于表情識別方法的描述,正確的是:()A.基于幾何特征的表情識別方法對表情的細微變化不敏感,識別準確率低B.基于紋理特征的表情識別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學習中的卷積神經(jīng)網(wǎng)絡在表情識別中能夠學習到全局和局部的特征,但對大規(guī)模數(shù)據(jù)集依賴嚴重D.表情識別系統(tǒng)只適用于正面清晰的人臉表情,對于側臉和遮擋的表情無法識別25、在一個基于計算機視覺的機器人導航系統(tǒng)中,需要根據(jù)環(huán)境圖像來規(guī)劃機器人的路徑。以下哪種視覺導航方法可能更適合復雜動態(tài)環(huán)境?()A.基于地圖的導航B.基于視覺里程計的導航C.基于深度學習的端到端導航D.以上都是二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在航空航天中的飛行器檢測和導航。2、(本題5分)簡述計算機視覺在兒童服務中的應用。3、(本題5分)計算機視覺中如何進行人臉識別?4、(本題5分)解釋計算機視覺中的車牌識別技術。三、分析題(本大題共5個小題,共25分)1、(本題5分)以特斯拉汽車的太陽能屋頂廣告為例,分析其如何通過視覺傳達展現(xiàn)環(huán)保能源和科技創(chuàng)新的結合。討論廣告中的色彩、圖形和文案的作用。2、(本題5分)探討某銀行的信用卡設計,研究其如何在卡面設計、安全標識、個性化選項等方面滿足用戶的需求和審美,同時保障支付安全。3、(本題5分)解析某汽車品牌的汽車保險宣傳廣告設計,探討其如何通過視覺元素展示保險

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論