版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023屆山西省古縣、高縣、離石縣八校高三下-學(xué)分認(rèn)定考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿足,且,則()A.3 B. C. D.2.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb3.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要4.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當(dāng)點(diǎn)C到平面ABE的距離最大時(shí),該四棱錐的體積為()A. B. C. D.15.已知函數(shù).設(shè),若對任意不相等的正數(shù),,恒有,則實(shí)數(shù)a的取值范圍是()A. B.C. D.6.《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自內(nèi)切圓的概率是()A. B. C. D.7.當(dāng)時(shí),函數(shù)的圖象大致是()A. B.C. D.8.已知集合A={x|x<1},B={x|},則A. B.C. D.9.已知雙曲線(a>0,b>0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為60°的直線l與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.10.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.11.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.12.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣85二、填空題:本題共4小題,每小題5分,共20分。13.己知函數(shù),若關(guān)于的不等式對任意的恒成立,則實(shí)數(shù)的取值范圍是______.14.已知函數(shù),曲線與直線相交,若存在相鄰兩個(gè)交點(diǎn)間的距離為,則可取到的最大值為__________.15.在中,為定長,,若的面積的最大值為,則邊的長為____________.16.的展開式中,項(xiàng)的系數(shù)是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動(dòng)點(diǎn),且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.18.(12分)市民小張計(jì)劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個(gè)還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個(gè)月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當(dāng)天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張?jiān)摴P貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個(gè)還款月應(yīng)還4900元,最后一個(gè)還款月應(yīng)還2510元,試計(jì)算小張?jiān)摴P貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張?jiān)摴P貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟(jì)利益的角度來考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點(diǎn),且,點(diǎn)的坐標(biāo)為,求的面積.20.(12分)如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點(diǎn),為棱上任意一點(diǎn),且不與點(diǎn)、點(diǎn)重合..(1)求證:平面平面;(2)是否存在點(diǎn)使得平面與平面所成的角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,請說明理由.21.(12分)設(shè)都是正數(shù),且,.求證:.22.(10分)已知中,角所對邊的長分別為,且(1)求角的大?。唬?)求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
設(shè),則,利用和求得,即可.【詳解】設(shè),則,因?yàn)?則,所以,又,即,所以,所以,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.2.B【解析】試題分析:對于選項(xiàng)A,,,,而,所以,但不能確定的正負(fù),所以它們的大小不能確定;對于選項(xiàng)B,,,兩邊同乘以一個(gè)負(fù)數(shù)改變不等號方向,所以選項(xiàng)B正確;對于選項(xiàng)C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯(cuò)誤;對于選項(xiàng)D,利用在上為減函數(shù)易得,所以D錯(cuò)誤.所以本題選B.【考點(diǎn)】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點(diǎn)睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進(jìn)行比較;若底數(shù)不同,可考慮利用中間量進(jìn)行比較.3.B【解析】
由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時(shí),存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點(diǎn)睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.4.B【解析】
過點(diǎn)E作,垂足為H,過H作,垂足為F,連接EF.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過點(diǎn)E作,垂足為H,過H作,垂足為F,連接EF.因?yàn)槠矫嫫矫鍭BCD,所以平面ABCD,所以.因?yàn)榈酌鍭BCD是邊長為1的正方形,,所以.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.易證平面平面ABE,所以點(diǎn)H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因?yàn)椋?,所以,?dāng)時(shí),等號成立.此時(shí)EH與ED重合,所以,.故選:B.【點(diǎn)睛】本題考查空間中點(diǎn)到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意輔助線及面面垂直的應(yīng)用.5.D【解析】
求解的導(dǎo)函數(shù),研究其單調(diào)性,對任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域?yàn)?,,?dāng)時(shí),,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對任意、,恒有,即,,,令,則,原不等式等價(jià)于在單調(diào)遞減,即,從而,因?yàn)?,所以?shí)數(shù)a的取值范圍是故選:D.【點(diǎn)睛】此題考查含參函數(shù)研究單調(diào)性問題,根據(jù)參數(shù)范圍化簡后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問題,屬于一般性題目.6.C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計(jì)算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點(diǎn)睛】本題主要考查了面積比的幾何概型的概率的計(jì)算問題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.7.B【解析】由,解得,即或,函數(shù)有兩個(gè)零點(diǎn),,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個(gè)極大值點(diǎn),不成立,排除,故選B.【方法點(diǎn)晴】本題通過對多個(gè)圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查知識點(diǎn)較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及時(shí)函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項(xiàng)一一排除.8.A【解析】∵集合∴∵集合∴,故選A9.A【解析】
若過點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對值小于等于漸近線的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點(diǎn)為,若過點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.10.D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,
∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時(shí),最小,
∴
設(shè)正方體的棱長為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計(jì)算能力,是中檔題.11.A【解析】
將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因?yàn)?,?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運(yùn)算性質(zhì).兩個(gè)對數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大小;若真數(shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大??;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.12.D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項(xiàng)和公比,根據(jù)等比數(shù)列的前n項(xiàng)和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的前n項(xiàng)和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
首先判斷出函數(shù)為定義在上的奇函數(shù),且在定義域上單調(diào)遞增,由此不等式對任意的恒成立,可轉(zhuǎn)化為在上恒成立,進(jìn)而建立不等式組,解出即可得到答案.【詳解】解:函數(shù)的定義域?yàn)?,且,函?shù)為奇函數(shù),當(dāng)時(shí),函數(shù),顯然此時(shí)函數(shù)為增函數(shù),函數(shù)為定義在上的增函數(shù),不等式即為,在上恒成立,,解得.故答案為.【點(diǎn)睛】本題考查函數(shù)單調(diào)性及奇偶性的綜合運(yùn)用,考查不等式的恒成立問題,屬于常規(guī)題目.14.4【解析】
由于曲線與直線相交,存在相鄰兩個(gè)交點(diǎn)間的距離為,所以函數(shù)的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結(jié)合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點(diǎn)睛】此題考查正弦函數(shù)的圖像和性質(zhì)的應(yīng)用及三角方程的求解,熟練應(yīng)用三角函數(shù)的圖像和性質(zhì)是解題的關(guān)鍵,考查了推理能力和計(jì)算能力,屬于中檔題.15.【解析】
設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進(jìn)一步求出的值即為所求.【詳解】解:設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【點(diǎn)睛】本題考查向量模的計(jì)算,建系是關(guān)鍵,屬于難題.16.240【解析】
利用二項(xiàng)式展開式的通項(xiàng)公式,令x的指數(shù)等于3,計(jì)算展開式中含有項(xiàng)的系數(shù)即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【點(diǎn)睛】本題主要考查二項(xiàng)式展開式的通項(xiàng)公式及簡單應(yīng)用,相對不難.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(II).【解析】
試題分析:(1)取中點(diǎn),連結(jié),以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能證明為直角三角形;(2)設(shè),由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結(jié)果.試題解析:(I)取中點(diǎn),連結(jié),依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因?yàn)?所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,由可得點(diǎn)的坐標(biāo)所以,設(shè)平面的法向量為,則,即解得,令,得,顯然平面的一個(gè)法向量為,依題意,解得或(舍去),所以,當(dāng)時(shí),二面角的余弦值為.法二:由(I)可知平面,所以,所以為二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,當(dāng)時(shí),二面角的余弦值為.18.(1)289200元;(2)能夠獲批;(3)應(yīng)選擇等額本金還款方式【解析】
(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個(gè)等差數(shù)列,即可由等差數(shù)列的前n項(xiàng)和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設(shè)小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計(jì)算出等額本息還款方式時(shí)所付出的總利息,兩個(gè)利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個(gè)等差數(shù)列,記為,表示數(shù)列的前項(xiàng)和,則,,則,故小張?jiān)摴P貸款的總利息為元.(2)設(shè)小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因?yàn)?,所以小張?jiān)摴P貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因?yàn)?,所以從?jīng)濟(jì)利益的角度來考慮,小張應(yīng)選擇等額本金還款方式.【點(diǎn)睛】本題考查了等差數(shù)列與等比數(shù)列求和公式的綜合應(yīng)用,數(shù)列在實(shí)際問題中的應(yīng)用,理解題意是解決問題的關(guān)鍵,屬于中檔題.19.(1)的極坐標(biāo)方程為,的直角坐標(biāo)方程為(2)【解析】
(1)先把曲線的參數(shù)方程消參后,轉(zhuǎn)化為普通方程,再利用求得極坐標(biāo)方程.將,化為,再利用求得曲線的普通方程.(2)設(shè)直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因?yàn)椋?,即,?(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點(diǎn)睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程、參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標(biāo)的幾何意義,還考查推理論證能力以及數(shù)形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游服務(wù)行業(yè)勞動(dòng)合同樣本
- 教育機(jī)構(gòu)管理層合同范例3篇
- 數(shù)碼產(chǎn)品交易合同案例3篇
- 安裝合同范文集合3篇
- 居住證房屋租賃合同完整文本3篇
- 數(shù)據(jù)采集服務(wù)合作合同3篇
- 安徽電子政務(wù)勞動(dòng)合同樣本3篇
- 方木購銷合同書格式3篇
- 安徽離婚協(xié)議書樣式3篇
- 攝影器材維修合同范本3篇
- GB/T 45076-2024再生資源交易平臺建設(shè)規(guī)范
- 10.2《師說》課件 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊
- 2024年度企業(yè)重組與債務(wù)重組協(xié)議3篇
- 年高考新課標(biāo)I卷語文試題講評課件
- 《三 采用合理的論證方法》教學(xué)設(shè)計(jì)統(tǒng)編版高中語文選擇性必修上冊
- 2024-2025學(xué)年語文二年級上冊 部編版期末測試卷 (含答案)
- 職業(yè)技術(shù)學(xué)院無人機(jī)應(yīng)用技術(shù)專業(yè)人才培養(yǎng)方案
- 神經(jīng)病學(xué)第九版腦梗死
- 2024-2030年中國膏劑(膏方)行業(yè)競爭狀況及營銷前景預(yù)測報(bào)告版
- 國家太空安全
- 惠州學(xué)院《電機(jī)與拖動(dòng)基礎(chǔ)》2022-2023學(xué)年期末試卷
評論
0/150
提交評論