湖南省湘南2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
湖南省湘南2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
湖南省湘南2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
湖南省湘南2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
湖南省湘南2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省湘南2025屆高三第二次聯(lián)考數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若關(guān)于的不等式有正整數(shù)解,則實數(shù)的最小值為()A. B. C. D.2.已知是虛數(shù)單位,若,則()A. B.2 C. D.103.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.4.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是5.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為()A.56383 B.57171 C.59189 D.612426.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現(xiàn)目標,現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種7.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的數(shù)字為A.4 B.5 C.6 D.78.設(shè)等差數(shù)列的前n項和為,且,,則()A.9 B.12 C. D.9.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.10.己知集合,,則()A. B. C. D.11.已知集合,,若AB,則實數(shù)的取值范圍是()A. B. C. D.12.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若且時,不等式恒成立,則實數(shù)a的取值范圍為________.14.已知、為正實數(shù),直線截圓所得的弦長為,則的最小值為__________.15.在平面直角坐標系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點.若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.16.如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.18.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補全列聯(lián)表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關(guān);(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程與曲線的直角坐標方程;(2)設(shè)為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.20.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.21.(12分)已知變換將平面上的點,分別變換為點,.設(shè)變換對應(yīng)的矩陣為.(1)求矩陣;(2)求矩陣的特征值.22.(10分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)題意可將轉(zhuǎn)化為,令,利用導(dǎo)數(shù),判斷其單調(diào)性即可得到實數(shù)的最小值.【詳解】因為不等式有正整數(shù)解,所以,于是轉(zhuǎn)化為,顯然不是不等式的解,當(dāng)時,,所以可變形為.令,則,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以當(dāng)時,,故,解得.故選:A.【點睛】本題主要考查不等式能成立問題的解法,涉及到對數(shù)函數(shù)的單調(diào)性的應(yīng)用,構(gòu)造函數(shù)法的應(yīng)用,導(dǎo)數(shù)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力,屬于中檔題.2、C【解析】

根據(jù)復(fù)數(shù)模的性質(zhì)計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.3、B【解析】

由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質(zhì):或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).4、B【解析】

根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.5、C【解析】

根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。6、B【解析】

分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎(chǔ)題.7、B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當(dāng)i<5時退出,故選B.8、A【解析】

由,可得以及,而,代入即可得到答案.【詳解】設(shè)公差為d,則解得,所以.故選:A.【點睛】本題考查等差數(shù)列基本量的計算,考查學(xué)生運算求解能力,是一道基礎(chǔ)題.9、D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題10、C【解析】

先化簡,再求.【詳解】因為,又因為,所以,故選:C.【點睛】本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎(chǔ)題.11、D【解析】

先化簡,再根據(jù),且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.12、A【解析】

求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將不等式兩邊同時平方進行變形,然后得到對應(yīng)不等式組,對的取值進行分類,將問題轉(zhuǎn)化為二次函數(shù)在區(qū)間上恒正、恒負時求參數(shù)范圍,列出對應(yīng)不等式組,即可求解出的取值范圍.【詳解】因為,所以,所以,所以,所以或,當(dāng)時,對且不成立,當(dāng)時,取,顯然不滿足,所以,所以,解得;當(dāng)時,取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【點睛】本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨分離出來,再以函數(shù)的最值與參數(shù)的大小關(guān)系求解出參數(shù)范圍.14、【解析】

先根據(jù)弦長,半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時,等號成立,則.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對目標式進行變形,變成能用基本不等式求最值的形式,也可用換元法進行變形,是中檔題.15、【解析】分析:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結(jié)合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,

∴t=,∴|OP|=.故答案為點睛:本題考查圓與圓的位置關(guān)系,考查差角的正切公式,考查學(xué)生的計算能力,屬于中檔題.16、【解析】

由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點睛】本題考查圓錐的體積、球的體積的計算,考查學(xué)生空間想象能力與計算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值為;極小值為;(2)見解析【解析】

(1)對函數(shù)求導(dǎo),進而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域為,,所以當(dāng)時,;當(dāng)時,,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因為,所以,又,則,因為,且在上單調(diào)遞減,所以,故.【點睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.18、(1)列聯(lián)表見解析,有把握;(2)分布列見解析,.【解析】

(1)根據(jù)頻率分布直方圖補全列聯(lián)表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關(guān).(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,則的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.【詳解】解:(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關(guān).(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012【點睛】本題考查獨立性檢驗的應(yīng)用,考查離散型隨機變量的分布列、數(shù)學(xué)期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.19、(1);(2)面積的最小值為;四邊形的面積為【解析】

(1)將曲線消去參數(shù)即可得到的普通方程,將,代入曲線的極坐標方程即可;(2)由(1)得曲線的極坐標方程,設(shè),,,利用方程可得,再利用基本不等式得,即可得,根據(jù)題意知,進而可得四邊形的面積.【詳解】(1)由曲線的參數(shù)方程為(為參數(shù))消去參數(shù)得曲線的極坐標方程為,即,所以,曲線的直角坐標方程.(2)依題意得的極坐標方程為設(shè),,,則,,故,當(dāng)且僅當(dāng)(即)時取“=”,故,即面積的最小值為.此時,故所求四邊形的面積為.【點睛】本題考查了極坐標方程化為直角坐標方程、參數(shù)方程化為普通方程、點到直線的距離公式、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.20、(1)證明見解析;(2).【解析】

(1)利用線面平行的定義證明即可(2)取的中點,并分別連接,,然后,證明相應(yīng)的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標系,利用坐標運算進行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點,所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點,并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論