湖北省荊門市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
湖北省荊門市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
湖北省荊門市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
湖北省荊門市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
湖北省荊門市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖北省荊門市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)2.2019年10月17日是我國第6個(gè)“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動(dòng),現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種3.在復(fù)平面內(nèi),復(fù)數(shù)z=i對應(yīng)的點(diǎn)為Z,將向量繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),所得向量對應(yīng)的復(fù)數(shù)是()A. B. C. D.4.設(shè)過拋物線上任意一點(diǎn)(異于原點(diǎn))的直線與拋物線交于兩點(diǎn),直線與拋物線的另一個(gè)交點(diǎn)為,則()A. B. C. D.5.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長為1,圖中復(fù)平面內(nèi)點(diǎn)表示復(fù)數(shù),則表示復(fù)數(shù)的點(diǎn)是()A.E B.F C.G D.H6.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有.則不等式的解集為().A. B.C.或 D.或7.已知函數(shù)是上的減函數(shù),當(dāng)最小時(shí),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.8.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.9.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣210.一個(gè)盒子里有4個(gè)分別標(biāo)有號碼為1,2,3,4的小球,每次取出一個(gè),記下它的標(biāo)號后再放回盒子中,共取3次,則取得小球標(biāo)號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種11.設(shè)為銳角,若,則的值為()A. B. C. D.12.棱長為2的正方體內(nèi)有一個(gè)內(nèi)切球,過正方體中兩條異面直線,的中點(diǎn)作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左焦點(diǎn)為,點(diǎn)在橢圓上且在軸的上方,若線段的中點(diǎn)在以原點(diǎn)為圓心,為半徑的圓上,則直線的斜率是_______.14.已知為矩形的對角線的交點(diǎn),現(xiàn)從這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),則這3個(gè)點(diǎn)不共線的概率為________.15.某中學(xué)數(shù)學(xué)競賽培訓(xùn)班共有10人,分為甲、乙兩個(gè)小組,在一次階段測試中兩個(gè)小組成績的莖葉圖如圖所示,若甲組5名同學(xué)成績的平均數(shù)為81,乙組5名同學(xué)成績的中位數(shù)為73,則x-y的值為________.16.已知函數(shù)的定義域?yàn)镽,導(dǎo)函數(shù)為,若,且,則滿足的x的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.18.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.19.(12分)已知曲線,直線:(為參數(shù)).(I)寫出曲線的參數(shù)方程,直線的普通方程;(II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.20.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項(xiàng)和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列、的通項(xiàng)公式;(2)令,證明:.21.(12分)如圖,在直三棱柱中,,,為的中點(diǎn),點(diǎn)在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.22.(10分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且,(,且)(1)求數(shù)列的通項(xiàng)公式;(2)證明:當(dāng)時(shí),

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.2、B【解析】

分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計(jì)算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時(shí),共有種不同分配方案;第二類:若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時(shí),共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時(shí),共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時(shí),共有種不同分配方案;共有20種不同分配方案.故選:B【點(diǎn)睛】本題考查排列與組合的綜合應(yīng)用,在做此類題時(shí),要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.3、A【解析】

由復(fù)數(shù)z求得點(diǎn)Z的坐標(biāo),得到向量的坐標(biāo),逆時(shí)針旋轉(zhuǎn),得到向量的坐標(biāo),則對應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點(diǎn)Z(0,1),

∴=(0,1),將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到,

設(shè)=(a,b),,則,即,

又,解得:,∴,對應(yīng)復(fù)數(shù)為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.4、C【解析】

畫出圖形,將三角形面積比轉(zhuǎn)為線段長度比,進(jìn)而轉(zhuǎn)為坐標(biāo)的表達(dá)式。寫出直線方程,再聯(lián)立方程組,求得交點(diǎn)坐標(biāo),最后代入坐標(biāo),求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點(diǎn)睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長的比例關(guān)系,進(jìn)而聯(lián)立方程組求解,是一道不錯(cuò)的綜合題.5、C【解析】

由于在復(fù)平面內(nèi)點(diǎn)的坐標(biāo)為,所以,然后將代入化簡后可找到其對應(yīng)的點(diǎn).【詳解】由,所以,對應(yīng)點(diǎn).故選:C【點(diǎn)睛】此題考查的是復(fù)數(shù)與復(fù)平面內(nèi)點(diǎn)的對就關(guān)系,復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題.6、D【解析】

先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時(shí)為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識點(diǎn),屬于較難題目.7、A【解析】

首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當(dāng)最小時(shí),,之后將函數(shù)零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的個(gè)數(shù)問題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當(dāng)最小時(shí),,函數(shù)恰有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)實(shí)根,等價(jià)于函數(shù)與的圖像有兩個(gè)交點(diǎn).畫出函數(shù)的簡圖如下,而函數(shù)恒過定點(diǎn),數(shù)形結(jié)合可得的取值范圍為.故選:A.【點(diǎn)睛】該題考查的是有關(guān)函數(shù)的問題,涉及到的知識點(diǎn)有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.8、D【解析】

以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.設(shè),則,.設(shè)平面的法向量為,則取,得.設(shè)直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、D【解析】

化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.10、C【解析】

由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標(biāo)號均不為4的球的情況,進(jìn)而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標(biāo)號最大值是4的取法有種,故選:C【點(diǎn)睛】本題考查古典概型,考查補(bǔ)集思想的應(yīng)用,屬于基礎(chǔ)題.11、D【解析】

用誘導(dǎo)公式和二倍角公式計(jì)算.【詳解】.故選:D.【點(diǎn)睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.12、C【解析】

連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點(diǎn)睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標(biāo)表示成圓的方程,與橢圓方程聯(lián)立可進(jìn)一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設(shè)可得,聯(lián)立方程可解得(舍),點(diǎn)在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應(yīng)用解析1:由題意可知,由中位線定理可得,即求得,所以.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的幾何性質(zhì)、直線與圓的位置關(guān)系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.14、【解析】

基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,由此能求出這3個(gè)點(diǎn)不共線的概率.【詳解】解:為矩形的對角線的交點(diǎn),現(xiàn)從,,,,這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,這3個(gè)點(diǎn)不共線的概率為.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查對立事件概率計(jì)算公式等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學(xué)成績的平均數(shù)為,解得;又乙班5名同學(xué)的中位數(shù)為73,則;.故答案為:.【點(diǎn)睛】本題考查莖葉圖及根據(jù)莖葉圖計(jì)算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.16、【解析】

構(gòu)造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調(diào)遞減,最后利用單調(diào)性以及奇偶性化簡不等式,解得結(jié)果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調(diào)遞減,則,即,故,則x的取值范圍為.故答案為:【點(diǎn)睛】本題考查函數(shù)奇偶性、單調(diào)性以及利用函數(shù)性質(zhì)解不等式,考查綜合分析求解能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標(biāo)系,求平面的一個(gè)法向量與平面的一個(gè)法向量,再利用向量數(shù)量積運(yùn)算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因?yàn)?,所以平面,又平面,所?(2)設(shè),,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點(diǎn),為的中點(diǎn),所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標(biāo)系,,,由平面幾何知識,得.則,,,,所以,,.設(shè)平面的法向量為,由,可得,令,則,,所以.同理,平面的一個(gè)法向量為.設(shè)平面與平面所成角為,則,所以.【點(diǎn)睛】本題考查了線面垂直的判定定理及二面角的平面角的求法,重點(diǎn)考查了空間向量的應(yīng)用,屬中檔題.18、(1)(2)證明見解析【解析】

(1),①當(dāng)時(shí),,②兩式相減即得數(shù)列的通項(xiàng)公式;(2)先求出,再利用裂項(xiàng)相消法求和證明.【詳解】(1)解:,①當(dāng)時(shí),.當(dāng)時(shí),,②由①-②,得,因?yàn)榉仙鲜剑裕?)證明:因?yàn)?,所以.【點(diǎn)睛】本題主要考查數(shù)列通項(xiàng)的求法,考查數(shù)列求和,意在考查學(xué)生對這些知識的理解掌握水平.19、(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標(biāo)準(zhǔn)方程設(shè),得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關(guān)鍵是處理好與角的關(guān)系.過點(diǎn)作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉(zhuǎn)化為橢圓上的點(diǎn),到定直線的最大值與最小值問題處理.試題解析:(I)曲線C的參數(shù)方程為(為參數(shù)).直線的普通方程為.(II)曲線C上任意一點(diǎn)到的距離為.則.其中為銳角,且.當(dāng)時(shí),取到最大值,最大值為.當(dāng)時(shí),取到最小值,最小值為.【考點(diǎn)定位】1、橢圓和直線的參數(shù)方程;2、點(diǎn)到直線的距離公式;3、解直角三角形.20、(1),(2)證明見解析【解析】

(1)利用首項(xiàng)和公差構(gòu)成方程組,從而求解出的通項(xiàng)公式;由的通項(xiàng)公式求解出的表達(dá)式,根據(jù)以及,求解出的通項(xiàng)公式;(2)利用錯(cuò)位相減法求解出的前項(xiàng)和,根據(jù)不等關(guān)系證明即可.【詳解】(1)設(shè)首項(xiàng)為,公差為.由題意,得,解得,∴,∴,∴當(dāng)時(shí),∴,.當(dāng)時(shí),滿足上式.∴(2),令數(shù)列的前

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論