內(nèi)蒙古科技大學(xué)《計算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
內(nèi)蒙古科技大學(xué)《計算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
內(nèi)蒙古科技大學(xué)《計算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
內(nèi)蒙古科技大學(xué)《計算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
內(nèi)蒙古科技大學(xué)《計算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁內(nèi)蒙古科技大學(xué)《計算智能導(dǎo)論》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的知識圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),以建立實(shí)體之間的關(guān)系。假設(shè)要構(gòu)建一個關(guān)于歷史人物和事件的知識圖譜,以下哪種數(shù)據(jù)源對于豐富和準(zhǔn)確的圖譜構(gòu)建是最有價值的?()A.百科全書和歷史書籍B.社交媒體上的相關(guān)討論C.個人博客和論壇帖子D.未經(jīng)證實(shí)的網(wǎng)絡(luò)傳聞2、人工智能中的強(qiáng)化學(xué)習(xí)算法可以分為基于值函數(shù)的方法和基于策略的方法。以下關(guān)于這兩種方法的描述,不正確的是()A.基于值函數(shù)的方法通過估計狀態(tài)值或動作值來選擇最優(yōu)動作B.基于策略的方法直接學(xué)習(xí)策略函數(shù),輸出動作的概率分布C.基于值函數(shù)的方法和基于策略的方法不能結(jié)合使用,只能選擇其一D.這兩種方法各有優(yōu)缺點(diǎn),在不同的應(yīng)用場景中表現(xiàn)不同3、在人工智能的語音識別任務(wù)中,需要將人類的語音轉(zhuǎn)換為文字。假設(shè)要處理不同口音、語速和背景噪音下的語音,為了提高語音識別的準(zhǔn)確率,以下哪種方法是有效的?()A.使用大量的標(biāo)注語音數(shù)據(jù)進(jìn)行訓(xùn)練B.采用簡單的聲學(xué)模型,減少計算復(fù)雜度C.忽略背景噪音,只關(guān)注語音的主要部分D.不進(jìn)行任何預(yù)處理,直接對原始語音進(jìn)行識別4、在人工智能的推薦系統(tǒng)中,為用戶提供個性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項(xiàng)是不準(zhǔn)確的?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.隨機(jī)推薦D.混合推薦5、在人工智能的醫(yī)療應(yīng)用中,疾病診斷是一個重要的方向。假設(shè)我們要利用人工智能技術(shù)輔助醫(yī)生診斷心臟病,需要對大量的醫(yī)療數(shù)據(jù)進(jìn)行分析。那么,以下關(guān)于人工智能在醫(yī)療診斷中的作用,哪一項(xiàng)是不準(zhǔn)確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺的細(xì)微模式和關(guān)聯(lián)B.可以完全取代醫(yī)生的診斷,獨(dú)立做出準(zhǔn)確的判斷C.有助于提高診斷的效率和準(zhǔn)確性D.需要結(jié)合醫(yī)生的臨床經(jīng)驗(yàn)和專業(yè)知識進(jìn)行綜合判斷6、在人工智能的音頻處理中,語音增強(qiáng)是一項(xiàng)重要任務(wù)。假設(shè)要提高在嘈雜環(huán)境中錄制的語音的清晰度,以下關(guān)于語音增強(qiáng)技術(shù)的描述,正確的是:()A.簡單的濾波方法就能夠完全去除噪聲,恢復(fù)清晰的語音B.語音增強(qiáng)技術(shù)只對特定類型的噪聲有效,對復(fù)雜的噪聲環(huán)境無能為力C.結(jié)合深度學(xué)習(xí)算法和聲學(xué)模型,可以更有效地從噪聲中提取有用的語音信息D.語音增強(qiáng)的效果不受原始語音質(zhì)量和噪聲強(qiáng)度的影響7、人工智能在工業(yè)生產(chǎn)中的質(zhì)量檢測方面有廣泛應(yīng)用。假設(shè)要開發(fā)一個能夠檢測產(chǎn)品缺陷的系統(tǒng),需要考慮光照、拍攝角度等因素對圖像的影響。以下關(guān)于解決這些影響的方法,哪一項(xiàng)是不正確的?()A.使用多光源和多角度拍攝,獲取更全面的產(chǎn)品圖像B.對圖像進(jìn)行預(yù)處理,如歸一化和標(biāo)準(zhǔn)化,減少光照和角度的影響C.忽略光照和角度的變化,依靠模型的自適應(yīng)能力D.建立光照和角度的模型,對圖像進(jìn)行校正8、人工智能中的強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制。假設(shè)一個機(jī)器人需要通過強(qiáng)化學(xué)習(xí)學(xué)會在復(fù)雜環(huán)境中行走和避障,以下關(guān)于機(jī)器人強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以在沒有任何先驗(yàn)知識的情況下,通過隨機(jī)探索快速學(xué)會有效的行走和避障策略B.強(qiáng)化學(xué)習(xí)中的獎勵設(shè)置對機(jī)器人的學(xué)習(xí)效果沒有關(guān)鍵影響,只要有獎勵就行C.結(jié)合機(jī)器人的物理模型和環(huán)境模型,可以為強(qiáng)化學(xué)習(xí)提供更好的先驗(yàn)知識,加速學(xué)習(xí)過程D.機(jī)器人的強(qiáng)化學(xué)習(xí)只適用于簡單的環(huán)境,對于復(fù)雜多變的真實(shí)環(huán)境無法應(yīng)用9、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計算量。以下關(guān)于模型壓縮和量化的敘述,不準(zhǔn)確的是()A.可以通過剪枝、量化和低秩分解等方法實(shí)現(xiàn)模型壓縮B.模型壓縮和量化會導(dǎo)致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對于大型復(fù)雜模型效果不佳D.這些技術(shù)對于在資源受限的設(shè)備上部署人工智能模型具有重要意義10、在人工智能的自然語言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開發(fā)一個能夠自動生成新聞報道的系統(tǒng),以下關(guān)于自然語言生成的描述,正確的是:()A.隨機(jī)生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報道B.僅僅依靠語言模型的概率預(yù)測,不考慮語義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學(xué)習(xí)模型學(xué)習(xí)大量的新聞文本數(shù)據(jù),并結(jié)合語義理解和規(guī)劃,可以生成較為準(zhǔn)確和流暢的新聞報道D.自然語言生成系統(tǒng)不需要考慮語言的風(fēng)格和體裁,能夠生成通用的文本11、在人工智能的發(fā)展趨勢中,邊緣計算與人工智能的結(jié)合越來越受到關(guān)注。假設(shè)我們要在物聯(lián)網(wǎng)設(shè)備上實(shí)現(xiàn)實(shí)時的人工智能推理,以下關(guān)于邊緣計算與人工智能融合的描述,哪一項(xiàng)是不正確的?()A.可以減少數(shù)據(jù)傳輸延遲,提高響應(yīng)速度B.能夠降低對云計算中心的依賴C.邊緣設(shè)備的計算能力足以處理所有復(fù)雜的人工智能任務(wù)D.需要考慮能源消耗和設(shè)備成本等因素12、生成對抗網(wǎng)絡(luò)(GAN)是一種熱門的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN由一個生成器和一個判別器組成,它們相互競爭,共同提高生成效果B.生成器的目標(biāo)是盡量使生成的圖像與真實(shí)圖像差異增大,以迷惑判別器C.判別器的能力越強(qiáng),生成器生成的圖像質(zhì)量就越差D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域,如音頻生成13、在人工智能的模型訓(xùn)練中,過擬合是一個常見的問題。假設(shè)正在訓(xùn)練一個用于手寫數(shù)字識別的神經(jīng)網(wǎng)絡(luò),以下關(guān)于防止過擬合的方法,哪一項(xiàng)是最有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少神經(jīng)網(wǎng)絡(luò)的層數(shù)C.使用更復(fù)雜的激活函數(shù)D.不進(jìn)行任何處理,認(rèn)為過擬合不會影響模型性能14、在人工智能的機(jī)器翻譯任務(wù)中,為了提高翻譯的質(zhì)量和準(zhǔn)確性,尤其是對于具有特定領(lǐng)域知識的文本,以下哪種策略可能是有效的?()A.使用大規(guī)模通用語料庫B.引入領(lǐng)域特定的詞典和知識C.優(yōu)化神經(jīng)網(wǎng)絡(luò)架構(gòu)D.以上都是15、自然語言處理是人工智能的重要研究方向之一,其目標(biāo)是讓計算機(jī)理解和生成人類語言。以下關(guān)于自然語言處理的說法,錯誤的是()A.詞法分析、句法分析和語義理解是自然語言處理中的關(guān)鍵步驟B.機(jī)器翻譯是自然語言處理的重要應(yīng)用之一,但目前的機(jī)器翻譯質(zhì)量已經(jīng)完全達(dá)到了人類翻譯的水平C.文本分類、情感分析和信息抽取等任務(wù)都屬于自然語言處理的范疇D.自然語言處理面臨著詞匯歧義、句法結(jié)構(gòu)復(fù)雜和語義理解困難等諸多挑戰(zhàn)16、假設(shè)在一個智能工廠的質(zhì)量檢測環(huán)節(jié),需要利用人工智能技術(shù)自動檢測產(chǎn)品的缺陷,以下哪種圖像分析技術(shù)和模型可能會被采用?()A.傳統(tǒng)的圖像處理算法B.基于深度學(xué)習(xí)的目標(biāo)檢測C.基于特征工程的分類模型D.以上都是17、人工智能中的計算機(jī)視覺技術(shù)能夠讓計算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計算機(jī)視覺的描述,不準(zhǔn)確的是()A.目標(biāo)檢測、圖像分類和語義分割是計算機(jī)視覺中的常見任務(wù)B.計算機(jī)視覺技術(shù)可以應(yīng)用于自動駕駛、安防監(jiān)控和工業(yè)檢測等領(lǐng)域C.計算機(jī)視覺系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動了計算機(jī)視覺技術(shù)的發(fā)展18、在人工智能的算法中,遺傳算法是一種基于自然選擇和遺傳機(jī)制的優(yōu)化算法??紤]一個優(yōu)化問題,需要在一個復(fù)雜的搜索空間中找到最優(yōu)解。以下關(guān)于遺傳算法的描述,哪一項(xiàng)是不正確的?()A.遺傳算法通過模擬生物進(jìn)化過程來尋找最優(yōu)解B.遺傳算法容易陷入局部最優(yōu)解C.遺傳算法對于大規(guī)模的優(yōu)化問題具有較好的性能D.遺傳算法的搜索過程是隨機(jī)的,沒有任何規(guī)律可循19、在人工智能的文本生成任務(wù)中,除了生成連貫的文字內(nèi)容,還需要考慮語言的邏輯性和合理性。假設(shè)我們要生成一篇新聞報道,以下關(guān)于文本生成的說法,哪一項(xiàng)是正確的?()A.可以完全依靠隨機(jī)生成來創(chuàng)造新穎的內(nèi)容B.語言模型的規(guī)模越大,生成的質(zhì)量一定越高C.預(yù)訓(xùn)練語言模型結(jié)合微調(diào)可以提高生成效果D.不需要考慮語法和語義的約束20、假設(shè)要開發(fā)一個能夠在復(fù)雜環(huán)境中自主導(dǎo)航的智能機(jī)器人,例如在倉庫中搬運(yùn)貨物,以下哪個模塊對于機(jī)器人的決策和行動至關(guān)重要?()A.環(huán)境感知模塊B.路徑規(guī)劃模塊C.運(yùn)動控制模塊D.以上都是二、簡答題(本大題共5個小題,共25分)1、(本題5分)談?wù)勅斯ぶ悄苤械哪P驮u估指標(biāo)。2、(本題5分)解釋人工智能在智能績效激勵機(jī)制設(shè)計中的方法。3、(本題5分)解釋人工智能中的過擬合和欠擬合問題。4、(本題5分)說明文本分類的方法和技術(shù)。5、(本題5分)解釋人工智能中的隱私保護(hù)措施。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)分析一個利用人工智能進(jìn)行民間藝術(shù)文化產(chǎn)業(yè)發(fā)展預(yù)測的實(shí)例,討論其預(yù)測依據(jù)和產(chǎn)業(yè)指導(dǎo)意義。2、(本題5分)研究一個使用人工智能的智能航空訂票系統(tǒng),分析其如何預(yù)測票價和提供最優(yōu)訂票方案。3、(本題5分)考察某智能民間舞蹈動作分析系統(tǒng)中人工智能的動作規(guī)范評估和改進(jìn)建議。4、(本題5分)以某智能金融投資顧問為例,探討人工智能在資產(chǎn)配置中的策略。5、(本題5分)研究一個使用人工智能的智能影視制作成本預(yù)測系統(tǒng),分析其如何準(zhǔn)確預(yù)測制作成本。四、操作題(本大題共3個小題,共30分)1、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論