南京郵電大學(xué)《書籍裝幀設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
南京郵電大學(xué)《書籍裝幀設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
南京郵電大學(xué)《書籍裝幀設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
南京郵電大學(xué)《書籍裝幀設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)南京郵電大學(xué)

《書籍裝幀設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的醫(yī)學(xué)影像分析中,例如對(duì)腫瘤的檢測(cè)和分割,需要高精度和可靠性。假設(shè)我們有一組磁共振成像(MRI)數(shù)據(jù),以下哪種技術(shù)能夠有效地輔助醫(yī)生進(jìn)行準(zhǔn)確的診斷和治療規(guī)劃?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的分割網(wǎng)絡(luò),結(jié)合多模態(tài)數(shù)據(jù)C.基于聚類和分類的方法D.基于形態(tài)學(xué)操作和閾值分割的方法2、計(jì)算機(jī)視覺在安防監(jiān)控領(lǐng)域有廣泛應(yīng)用。假設(shè)要通過監(jiān)控?cái)z像頭實(shí)時(shí)檢測(cè)人群中的異常行為,以下哪種方法可能需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練?()A.基于規(guī)則的方法B.基于深度學(xué)習(xí)的方法C.基于背景減除的方法D.基于幀差法的方法3、在計(jì)算機(jī)視覺的全景圖像生成任務(wù)中,將多幅局部圖像拼接成一幅全景圖像。假設(shè)要生成一個(gè)城市景觀的全景圖像,以下關(guān)于全景圖像生成方法的描述,哪一項(xiàng)是不正確的?()A.首先需要對(duì)局部圖像進(jìn)行特征提取和匹配,找到它們之間的對(duì)應(yīng)關(guān)系B.可以使用圖像變形和融合技術(shù)來消除拼接處的縫隙和色差C.全景圖像生成不受拍攝角度、光照條件和相機(jī)參數(shù)的影響,能夠完美拼接任何圖像D.基于深度學(xué)習(xí)的方法能夠自動(dòng)學(xué)習(xí)全景圖像的生成規(guī)律,提高拼接效果4、在計(jì)算機(jī)視覺的三維重建任務(wù)中,我們需要從多幅二維圖像中恢復(fù)物體的三維結(jié)構(gòu)。假設(shè)我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰(zhàn)?()A.基于立體視覺的重建方法B.基于運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(StructurefromMotion)的方法C.利用激光掃描數(shù)據(jù)進(jìn)行重建D.基于模型擬合的重建方法5、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域發(fā)揮著重要作用。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,需要識(shí)別各種交通標(biāo)志、車輛和行人。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺的描述,哪一項(xiàng)是不正確的?()A.計(jì)算機(jī)視覺可以通過攝像頭實(shí)時(shí)獲取道路信息,為車輛的決策和控制提供依據(jù)B.它能夠準(zhǔn)確識(shí)別不同光照和天氣條件下的交通對(duì)象,不受任何干擾C.深度學(xué)習(xí)算法在自動(dòng)駕駛的計(jì)算機(jī)視覺中被廣泛應(yīng)用,用于目標(biāo)檢測(cè)和語義分割D.計(jì)算機(jī)視覺需要與其他傳感器(如雷達(dá)、激光雷達(dá))的數(shù)據(jù)融合,以提高感知的可靠性6、在計(jì)算機(jī)視覺中,目標(biāo)檢測(cè)是一項(xiàng)重要的任務(wù)。假設(shè)要開發(fā)一個(gè)能夠在城市交通場(chǎng)景中檢測(cè)車輛和行人的系統(tǒng)。以下關(guān)于目標(biāo)檢測(cè)算法的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的因素?()A.算法的檢測(cè)速度,以滿足實(shí)時(shí)性要求B.算法在小目標(biāo)檢測(cè)上的性能,因?yàn)檐囕v和行人在圖像中可能較小C.算法的模型復(fù)雜度,越復(fù)雜的模型效果越好D.算法是否開源,開源的算法更易于使用7、計(jì)算機(jī)視覺中,以下哪個(gè)任務(wù)通常需要對(duì)圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像生成B.目標(biāo)檢測(cè)C.圖像超分辨率D.圖像去噪8、計(jì)算機(jī)視覺中的圖像修復(fù)旨在恢復(fù)圖像中缺失或損壞的部分。假設(shè)一張珍貴的老照片有部分區(qū)域損壞,需要進(jìn)行修復(fù)以還原其完整的內(nèi)容。以下哪種圖像修復(fù)方法在處理這種情況時(shí)能夠生成更自然和逼真的結(jié)果?()A.基于擴(kuò)散的圖像修復(fù)B.基于紋理合成的圖像修復(fù)C.基于深度學(xué)習(xí)的圖像修復(fù)D.基于樣例的圖像修復(fù)9、計(jì)算機(jī)視覺在人臉識(shí)別領(lǐng)域取得了顯著進(jìn)展。假設(shè)要開發(fā)一個(gè)人臉識(shí)別系統(tǒng),以下關(guān)于人臉識(shí)別技術(shù)的描述,哪一項(xiàng)是不正確的?()A.可以通過提取人臉的幾何特征、紋理特征或深度學(xué)習(xí)特征進(jìn)行識(shí)別B.人臉識(shí)別系統(tǒng)通常需要進(jìn)行活體檢測(cè),以防止使用照片或視頻等欺詐手段C.大規(guī)模的人臉數(shù)據(jù)集和深度學(xué)習(xí)模型的結(jié)合,大大提高了人臉識(shí)別的準(zhǔn)確率D.人臉識(shí)別技術(shù)在任何光照條件、姿態(tài)變化和表情變化下都能準(zhǔn)確識(shí)別,不受這些因素的影響10、在計(jì)算機(jī)視覺的行人重識(shí)別任務(wù)中,需要在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人。假設(shè)我們要在一個(gè)大型商場(chǎng)的監(jiān)控系統(tǒng)中實(shí)現(xiàn)行人重識(shí)別,以下哪種特征和模型能夠提高識(shí)別的準(zhǔn)確率和跨攝像頭的泛化能力?()A.基于顏色和紋理的特征B.基于深度學(xué)習(xí)的全局特征和度量學(xué)習(xí)C.基于形狀和輪廓的特征D.基于步態(tài)和姿勢(shì)的特征11、計(jì)算機(jī)視覺中的表情識(shí)別旨在判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個(gè)用于在線教育的表情識(shí)別系統(tǒng),以下關(guān)于表情特征的提取,哪一項(xiàng)是需要重點(diǎn)關(guān)注的?()A.提取面部肌肉的細(xì)微運(yùn)動(dòng)作為特征B.僅考慮眼睛和嘴巴的形狀變化C.忽略面部的整體輪廓,只關(guān)注局部特征D.不進(jìn)行任何特征提取,直接使用原始圖像進(jìn)行分類12、在計(jì)算機(jī)視覺的應(yīng)用于工業(yè)檢測(cè)中,需要檢測(cè)產(chǎn)品表面的缺陷和瑕疵。假設(shè)我們要檢測(cè)手機(jī)屏幕上的劃痕和亮點(diǎn),以下哪種方法能夠?qū)崿F(xiàn)快速、準(zhǔn)確的缺陷檢測(cè),并且適應(yīng)不同的產(chǎn)品批次和生產(chǎn)環(huán)境?()A.基于機(jī)器視覺的傳統(tǒng)檢測(cè)方法,結(jié)合閾值和形態(tài)學(xué)操作B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,針對(duì)缺陷進(jìn)行訓(xùn)練C.基于紋理分析和模式識(shí)別的方法D.基于光學(xué)原理和物理模型的檢測(cè)方法13、圖像分割是將圖像分成不同的區(qū)域,每個(gè)區(qū)域具有相似的特征。假設(shè)要對(duì)醫(yī)學(xué)圖像進(jìn)行器官分割,以下關(guān)于圖像分割方法的描述,哪一項(xiàng)是不正確的?()A.基于閾值的分割方法簡(jiǎn)單直接,但對(duì)于復(fù)雜圖像效果往往不佳B.基于邊緣檢測(cè)的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學(xué)習(xí)的語義分割方法能夠?qū)崿F(xiàn)像素級(jí)別的分類,效果較好,但計(jì)算量較大D.圖像分割只適用于灰度圖像,對(duì)于彩色圖像無法進(jìn)行有效的分割14、在計(jì)算機(jī)視覺的遙感圖像分析中,假設(shè)要從衛(wèi)星遙感圖像中提取土地利用信息,以下哪種技術(shù)可能對(duì)區(qū)分不同類型的土地覆蓋有幫助?()A.高光譜分析B.紋理分析C.形狀分析D.以上都有可能15、計(jì)算機(jī)視覺中的視頻理解任務(wù)包括對(duì)視頻內(nèi)容的分析和解釋。假設(shè)要理解一段新聞視頻的主要內(nèi)容和事件發(fā)展。以下關(guān)于視頻理解的描述,哪一項(xiàng)是不正確的?()A.可以通過對(duì)視頻中的幀進(jìn)行分類、目標(biāo)檢測(cè)和跟蹤來實(shí)現(xiàn)視頻理解B.深度學(xué)習(xí)中的注意力機(jī)制可以幫助聚焦視頻中的關(guān)鍵信息,提高理解的準(zhǔn)確性C.視頻理解只需要關(guān)注視覺信息,不需要考慮音頻和文字等其他模態(tài)的信息D.可以結(jié)合知識(shí)圖譜和語義理解技術(shù),對(duì)視頻中的內(nèi)容進(jìn)行更深入的分析和解釋16、在計(jì)算機(jī)視覺的視頻監(jiān)控系統(tǒng)中,異常事件檢測(cè)是重要功能之一。假設(shè)要在一個(gè)倉(cāng)庫(kù)的監(jiān)控視頻中檢測(cè)出異常的人員活動(dòng)或物品移動(dòng)。以下哪種異常事件檢測(cè)方法在處理這種大規(guī)模視頻數(shù)據(jù)時(shí)能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測(cè)B.基于統(tǒng)計(jì)模型的檢測(cè)C.基于深度學(xué)習(xí)的檢測(cè)D.基于人工觀察的檢測(cè)17、人臉識(shí)別是計(jì)算機(jī)視覺的一個(gè)重要應(yīng)用。假設(shè)一個(gè)公司使用人臉識(shí)別系統(tǒng)進(jìn)行員工考勤。以下關(guān)于人臉識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.它可以通過提取面部特征,如眼睛、鼻子和嘴巴的形狀和位置,來進(jìn)行身份識(shí)別B.能夠適應(yīng)不同的表情、姿態(tài)和光照變化,保持較高的識(shí)別準(zhǔn)確率C.人臉識(shí)別系統(tǒng)的安全性極高,不存在被欺騙或誤識(shí)別的可能性D.深度學(xué)習(xí)模型在人臉識(shí)別中表現(xiàn)出色,大大提高了識(shí)別性能18、在計(jì)算機(jī)視覺的實(shí)際應(yīng)用中,光照變化會(huì)對(duì)圖像的處理和分析產(chǎn)生影響。以下關(guān)于光照變化的描述,不正確的是()A.光照變化可能導(dǎo)致圖像的亮度、對(duì)比度和顏色發(fā)生改變,增加了圖像處理的難度B.一些預(yù)處理技術(shù),如直方圖均衡化,可以在一定程度上減輕光照變化的影響C.深度學(xué)習(xí)模型能夠自動(dòng)適應(yīng)各種光照變化,無需進(jìn)行額外的處理D.光照變化對(duì)于目標(biāo)檢測(cè)和跟蹤等任務(wù)的準(zhǔn)確性可能會(huì)產(chǎn)生較大的影響19、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,需要理解整個(gè)圖像的語義信息。假設(shè)要分析一張城市街道的圖像中包含的物體和它們之間的關(guān)系,以下關(guān)于場(chǎng)景理解方法的描述,正確的是:()A.單獨(dú)對(duì)圖像中的每個(gè)物體進(jìn)行識(shí)別和分類就能實(shí)現(xiàn)場(chǎng)景理解B.忽略圖像中的上下文信息和空間布局對(duì)場(chǎng)景理解沒有影響C.利用深度學(xué)習(xí)中的語義分割和圖模型可以更好地理解場(chǎng)景的結(jié)構(gòu)和語義關(guān)系D.場(chǎng)景理解只適用于簡(jiǎn)單的室內(nèi)場(chǎng)景,對(duì)于復(fù)雜的戶外場(chǎng)景無法處理20、計(jì)算機(jī)視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定目標(biāo)。假設(shè)要跟蹤一個(gè)在復(fù)雜場(chǎng)景中運(yùn)動(dòng)的人物,以下關(guān)于目標(biāo)跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準(zhǔn)確預(yù)測(cè)目標(biāo)的運(yùn)動(dòng)軌跡,但對(duì)目標(biāo)外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計(jì)算復(fù)雜度低,適用于實(shí)時(shí)跟蹤要求高的場(chǎng)景C.基于深度學(xué)習(xí)的跟蹤算法需要大量的訓(xùn)練數(shù)據(jù),并且在目標(biāo)被遮擋時(shí)容易丟失D.目標(biāo)跟蹤算法只要在初始幀中準(zhǔn)確檢測(cè)到目標(biāo),就能夠在后續(xù)幀中一直保持跟蹤的準(zhǔn)確性21、圖像分類是計(jì)算機(jī)視覺的基礎(chǔ)任務(wù)之一。假設(shè)要對(duì)一組動(dòng)物圖片進(jìn)行分類,區(qū)分貓、狗、兔子等。以下關(guān)于圖像分類方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)方法,如支持向量機(jī)(SVM),也可以用于圖像分類任務(wù)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類中取得了顯著的效果C.圖像分類只需要考慮圖像的內(nèi)容,不需要考慮圖像的拍攝角度和背景等因素D.可以通過數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、裁剪、翻轉(zhuǎn)等,增加訓(xùn)練數(shù)據(jù)的多樣性22、在計(jì)算機(jī)視覺的圖像增強(qiáng)處理中,目的是改善圖像的質(zhì)量和可讀性。假設(shè)我們要對(duì)一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是不正確的?()A.直方圖均衡化可以通過調(diào)整圖像的灰度分布,增強(qiáng)圖像的對(duì)比度B.基于Retinex理論的方法可以分離圖像的光照和反射成分,從而改善圖像的視覺效果C.圖像增強(qiáng)算法可以在不增加噪聲的情況下,顯著提高圖像的亮度和清晰度D.不同的圖像增強(qiáng)方法適用于不同類型的圖像,需要根據(jù)具體情況選擇合適的方法23、計(jì)算機(jī)視覺在文物保護(hù)和修復(fù)中的應(yīng)用逐漸增多。假設(shè)要對(duì)一幅古老的繪畫進(jìn)行數(shù)字化修復(fù)和增強(qiáng),以下關(guān)于顏色恢復(fù)的挑戰(zhàn),哪一項(xiàng)是最為顯著的?()A.由于年代久遠(yuǎn),原畫作的顏色信息缺失嚴(yán)重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復(fù)C.缺乏對(duì)原畫作創(chuàng)作時(shí)所用顏料的了解,難以準(zhǔn)確還原顏色D.修復(fù)過程中可能引入新的顏色偏差,影響修復(fù)效果24、在一個(gè)基于計(jì)算機(jī)視覺的無人駕駛系統(tǒng)中,需要對(duì)道路場(chǎng)景進(jìn)行理解和預(yù)測(cè),例如判斷前方是否有行人橫穿馬路。為了實(shí)現(xiàn)準(zhǔn)確的場(chǎng)景理解和預(yù)測(cè),以下哪種技術(shù)可能是關(guān)鍵?()A.語義分割B.實(shí)例分割C.場(chǎng)景圖生成D.以上都是25、在計(jì)算機(jī)視覺的視覺跟蹤與定位任務(wù)中,實(shí)時(shí)跟蹤物體并確定其在空間中的位置。假設(shè)要在一個(gè)室內(nèi)環(huán)境中跟蹤一個(gè)移動(dòng)的機(jī)器人并確定其位置,以下關(guān)于視覺跟蹤與定位方法的描述,正確的是:()A.基于標(biāo)志物的跟蹤與定位方法在標(biāo)志物被遮擋時(shí)仍能準(zhǔn)確工作B.視覺里程計(jì)方法能夠獨(dú)立實(shí)現(xiàn)高精度的長(zhǎng)期跟蹤與定位C.同時(shí)使用多個(gè)相機(jī)進(jìn)行觀測(cè)不能提高跟蹤與定位的性能D.環(huán)境的光照變化和動(dòng)態(tài)障礙物對(duì)視覺跟蹤與定位的結(jié)果影響較小26、計(jì)算機(jī)視覺中的表情識(shí)別用于分析人臉的表情狀態(tài)。假設(shè)要在一個(gè)在線教育平臺(tái)中檢測(cè)學(xué)生的學(xué)習(xí)狀態(tài)。以下關(guān)于表情識(shí)別的描述,哪一項(xiàng)是不正確的?()A.可以通過提取面部肌肉的運(yùn)動(dòng)特征來判斷表情B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動(dòng)學(xué)習(xí)表情的特征表示C.表情識(shí)別能夠準(zhǔn)確區(qū)分細(xì)微的表情變化,如困惑和專注D.表情識(shí)別不受面部遮擋和光照變化的影響,始終能夠準(zhǔn)確判斷27、計(jì)算機(jī)視覺在農(nóng)業(yè)中的應(yīng)用可以幫助監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況。假設(shè)要通過圖像分析判斷農(nóng)作物的病蟲害程度,以下關(guān)于農(nóng)業(yè)計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準(zhǔn)確判斷病蟲害的程度B.不同農(nóng)作物品種和生長(zhǎng)階段對(duì)病蟲害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準(zhǔn)確地評(píng)估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復(fù)雜性對(duì)計(jì)算機(jī)視覺的應(yīng)用沒有挑戰(zhàn)28、計(jì)算機(jī)視覺在體育賽事分析中的應(yīng)用可以提供更深入的比賽洞察。假設(shè)要分析一場(chǎng)足球比賽中球員的跑位和傳球模式,以下關(guān)于體育賽事計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰(zhàn)術(shù)和策略B.球員的速度和加速度等動(dòng)態(tài)信息對(duì)比賽分析的價(jià)值不大C.結(jié)合深度學(xué)習(xí)和軌跡分析技術(shù)可以更有效地挖掘比賽中的關(guān)鍵模式和趨勢(shì)D.比賽場(chǎng)地的光照和攝像機(jī)視角對(duì)計(jì)算機(jī)視覺分析的結(jié)果沒有影響29、視頻理解是計(jì)算機(jī)視覺中的一個(gè)具有挑戰(zhàn)性的任務(wù)。以下關(guān)于視頻理解的敘述,不準(zhǔn)確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時(shí)間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)在處理視頻序列數(shù)據(jù)時(shí)具有優(yōu)勢(shì)C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應(yīng)用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復(fù)雜場(chǎng)景下的視頻內(nèi)容,不存在任何挑戰(zhàn)30、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論