版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023屆山東省日照實(shí)驗(yàn)高級(jí)中學(xué)下學(xué)期高三數(shù)學(xué)試題第一次模擬考試試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則,,,的大小關(guān)系為()A. B.C. D.2.已知α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件3.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.4.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.5.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.已知集合,,則A. B. C. D.7.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件8.已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長(zhǎng)為4,、、分別為側(cè)棱,,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.9.如圖,在平面四邊形中,滿足,且,沿著把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.10.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.3311.已知,則()A. B. C. D.12.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對(duì)于恒成立,則的取值范圍是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正三棱柱中,是的中點(diǎn),,則異面直線與所成的角為____.14.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價(jià)各幾何?”設(shè)人數(shù)、物價(jià)分別為、,滿足,則_____,_____.15.已知函數(shù)f(x)=若關(guān)于x的方程f(x)=kx有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是________.16.設(shè)函數(shù),若對(duì)于任意的,∈[2,,≠,不等式恒成立,則實(shí)數(shù)a的取值范圍是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面四邊形中,的面積為.(1)求的長(zhǎng);(2)已知,為銳角,求.18.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍:(2)若,記的兩個(gè)極值點(diǎn)為,,記的最大值與最小值分別為M,m,求的值.19.(12分)己知,函數(shù).(1)若,解不等式;(2)若函數(shù),且存在使得成立,求實(shí)數(shù)的取值范圍.20.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍21.(12分)已知數(shù)列,滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)分別求數(shù)列,的前項(xiàng)和,.22.(10分)已知橢圓的右焦點(diǎn)為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點(diǎn),、分別為線段、的中點(diǎn),若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】因?yàn)?,所以,因?yàn)?,,所?.綜上;故選D.2.A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷.解:根據(jù)題意,由于α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個(gè)平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點(diǎn):必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.3.A【解析】
根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問題,是基礎(chǔ)題.4.D【解析】
本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對(duì)角線平分,可得四邊形為平行四邊形,結(jié)合,故對(duì)三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.5.B【解析】
先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點(diǎn)睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎(chǔ).解題時(shí)可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進(jìn)行判斷.6.C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時(shí)要先將參與運(yùn)算的集合化為最簡(jiǎn)形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.7.D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運(yùn)算即可說明成立;必要性中,由數(shù)量積運(yùn)算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點(diǎn)睛】本題考查平面向量數(shù)量積的運(yùn)算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡(jiǎn)單題.8.D【解析】
如圖,平面截球所得截面的圖形為圓面,計(jì)算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點(diǎn)睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.9.C【解析】
過作于,連接,易知,,從而可證平面,進(jìn)而可知,當(dāng)最大時(shí),取得最大值,取的中點(diǎn),可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因?yàn)?,所以平面,所以,?dāng)最大時(shí),取得最大值,取的中點(diǎn),則,所以,因?yàn)?,所以點(diǎn)在以為焦點(diǎn)的橢圓上(不在左右頂點(diǎn)),其中長(zhǎng)軸長(zhǎng)為10,焦距長(zhǎng)為8,所以的最大值為橢圓的短軸長(zhǎng)的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點(diǎn)睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.10.C【解析】
依次遞推求出得解.【詳解】n=1時(shí),,n=2時(shí),,n=3時(shí),,n=4時(shí),,n=5時(shí),.故選:C【點(diǎn)睛】本題主要考查遞推公式的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.11.B【解析】
利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.【詳解】,本題正確選項(xiàng):【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.12.A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對(duì)稱又在上是增函數(shù)在上是減函數(shù),即對(duì)于恒成立在上恒成立,即的取值范圍為:本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
要求兩條異面直線所成的角,需要通過見中點(diǎn)找中點(diǎn)的方法,找出邊的中點(diǎn),連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點(diǎn)E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長(zhǎng)為,易算得∴在∴故答案為【點(diǎn)睛】本題考查異面直線所成的角,本題是一個(gè)典型的異面直線所成的角的問題,解答時(shí)也是應(yīng)用典型的見中點(diǎn)找中點(diǎn)的方法,注意求角的三個(gè)環(huán)節(jié),一畫,二證,三求.14.【解析】
利用已知條件,通過求解方程組即可得到結(jié)果.【詳解】設(shè)人數(shù)、物價(jià)分別為、,滿足,解得,.故答案為:;.【點(diǎn)睛】本題考查函數(shù)與方程的應(yīng)用,方程組的求解,考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】由圖可知,當(dāng)直線y=kx在直線OA與x軸(不含它們)之間時(shí),y=kx與y=f(x)的圖像有兩個(gè)不同交點(diǎn),即方程有兩個(gè)不相同的實(shí)根.16.【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當(dāng)時(shí)在[2,上單調(diào)遞增;當(dāng)時(shí)在上單調(diào)遞增;在上單調(diào)遞減,因此實(shí)數(shù)a的取值范圍是考點(diǎn):函數(shù)單調(diào)性三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)4.【解析】
(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進(jìn)而求得,利用同角三角函數(shù)的基本關(guān)系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.18.(1);(2)【解析】
(1)求導(dǎo).根據(jù)單調(diào),轉(zhuǎn)化為對(duì)恒成立求解(2)由(1)知,是的兩個(gè)根,不妨設(shè),令.根據(jù),確定,將轉(zhuǎn)化為.令,用導(dǎo)數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域?yàn)椋?因?yàn)閱握{(diào),所以對(duì)恒成立,所以,恒成立,因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),所以;(2)由(1)知,是的兩個(gè)根.從而,,不妨設(shè),則.因?yàn)椋詔為關(guān)于a的減函數(shù),所以..令,則.因?yàn)楫?dāng)時(shí),在上為減函數(shù).所以當(dāng)時(shí),.從而,所以在上為減函數(shù).所以當(dāng)時(shí),.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.19.(1);(2)【解析】
(1)零點(diǎn)分段解不等式即可(2)等價(jià)于,由,得不等式即可求解【詳解】(1)當(dāng)時(shí),,當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得.綜上可知,原不等式的解集為.(2).存在使得成立,等價(jià)于.又因?yàn)?,所以,?解得,結(jié)合,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法,考查不等式恒成立及最值,考查轉(zhuǎn)化思想,是中檔題20.(1).(2).【解析】試題分析:(Ⅰ)通過討論x的范圍,得到關(guān)于x的不等式組,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到關(guān)于a的不等式,解出即可.試題解析:(1)不等式等價(jià)于或或,解得或,所以不等式的解集是;(2),,,解得實(shí)數(shù)的取值范圍是.點(diǎn)睛:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.21.(1)(2);【解析】
(1),,可得為公比為2的等比數(shù)列,可得為公差為1的等差數(shù)列,再算出,的通項(xiàng)公式,解方程組即可;(2)利用分組求和法解決.【詳解】(1)依題意有又.可得數(shù)列為公比為2的等比數(shù)列,為公差為1的等差數(shù)列,由,得解得故數(shù)列,的通項(xiàng)公式分別為.(2),.【點(diǎn)睛】本題考查利用遞推公式求數(shù)列的通項(xiàng)公式以及分組
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025股份代持合同協(xié)議書范本標(biāo)準(zhǔn)版
- 2025建筑安裝工程拆遷房屋合同模板
- 2024年果樹種植基地建設(shè)與運(yùn)營(yíng)合同
- 2024事業(yè)單位員工終止聘用合同及離職手續(xù)及工作交接及安置協(xié)議3篇
- 2024年版加工承攬合同:服裝制造商與品牌商之間的服裝生產(chǎn)與質(zhì)量要求
- 2024年度中小企業(yè)知識(shí)產(chǎn)權(quán)融資合同3篇
- 虛擬現(xiàn)實(shí)中石化施工合同
- 廣場(chǎng)環(huán)?;顒?dòng)租賃合同
- 工業(yè)煙囪維修施工合同
- 影視行業(yè)招投標(biāo)風(fēng)險(xiǎn)與防控
- 2024年荊州市產(chǎn)業(yè)投資發(fā)展集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- Unit2Whattimedoyougotoschool?大單元整體教學(xué)設(shè)計(jì)人教版七年級(jí)英語(yǔ)下冊(cè)
- 建筑防雷與接地-等電位連接
- 2024行政法與行政訴訟法論述題
- 國(guó)際貨運(yùn)代理業(yè)現(xiàn)狀及發(fā)展對(duì)策分析-以KX公司為例
- 施工現(xiàn)場(chǎng)安全文明施工管理處罰細(xì)則
- 重慶洪崖洞旅游營(yíng)銷策劃
- 消費(fèi)者調(diào)查訪談提綱模板
- 山東建筑大學(xué)混凝土結(jié)構(gòu)原理期末考試復(fù)習(xí)題
- 消化道腫瘤的診斷和治療
- 護(hù)理病例報(bào)告范文5篇
評(píng)論
0/150
提交評(píng)論