![2025屆浙江省兩校高三3月份第一次模擬考試數(shù)學試卷含解析_第1頁](http://file4.renrendoc.com/view14/M02/0B/10/wKhkGWdlt0aAR3q1AAIYgZUYXi4031.jpg)
![2025屆浙江省兩校高三3月份第一次模擬考試數(shù)學試卷含解析_第2頁](http://file4.renrendoc.com/view14/M02/0B/10/wKhkGWdlt0aAR3q1AAIYgZUYXi40312.jpg)
![2025屆浙江省兩校高三3月份第一次模擬考試數(shù)學試卷含解析_第3頁](http://file4.renrendoc.com/view14/M02/0B/10/wKhkGWdlt0aAR3q1AAIYgZUYXi40313.jpg)
![2025屆浙江省兩校高三3月份第一次模擬考試數(shù)學試卷含解析_第4頁](http://file4.renrendoc.com/view14/M02/0B/10/wKhkGWdlt0aAR3q1AAIYgZUYXi40314.jpg)
![2025屆浙江省兩校高三3月份第一次模擬考試數(shù)學試卷含解析_第5頁](http://file4.renrendoc.com/view14/M02/0B/10/wKhkGWdlt0aAR3q1AAIYgZUYXi40315.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江省兩校高三3月份第一次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)2.已知過點且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.33.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.124.復數(shù)滿足,則()A. B. C. D.5.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.36.設,則A. B. C. D.7.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.8.的展開式中的系數(shù)為()A.5 B.10 C.20 D.309.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項和,則()A.36 B.72 C. D.10.若,則的值為()A. B. C. D.11.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.12.已知復數(shù)在復平面內(nèi)對應的點的坐標為,則下列結論正確的是()A. B.復數(shù)的共軛復數(shù)是C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若,則實數(shù)的取值范圍為__________.14.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.15.由于受到網(wǎng)絡電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經(jīng)濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失統(tǒng)計如圖所示,估算月經(jīng)濟損失的平均數(shù)為,中位數(shù)為n,則_________.16.設滿足約束條件,則目標函數(shù)的最小值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)三棱柱中,平面平面,,點為棱的中點,點為線段上的動點.(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個極值點,,且,證明.19.(12分)己知,,.(1)求證:;(2)若,求證:.20.(12分)已知變換將平面上的點,分別變換為點,.設變換對應的矩陣為.(1)求矩陣;(2)求矩陣的特征值.21.(12分)已知點到拋物線C:y1=1px準線的距離為1.(Ⅰ)求C的方程及焦點F的坐標;(Ⅱ)設點P關于原點O的對稱點為點Q,過點Q作不經(jīng)過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.22.(10分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)題意分析的圖像關于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應用,有一定綜合性,屬于中檔題。2、C【解析】
設切點為,則,由于直線經(jīng)過點,可得切線的斜率,再根據(jù)導數(shù)的幾何意義求出曲線在點處的切線斜率,建立關于的方程,從而可求方程.【詳解】若直線與曲線切于點,則,又∵,∴,∴,解得,,∴過點與曲線相切的直線方程為或,故選C.【點睛】本題主要考查了利用導數(shù)求曲線上過某點切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導數(shù)的幾何意義求解切線的方程是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.3、D【解析】
中位數(shù)指一串數(shù)據(jù)按從小(大)到大(?。┡帕泻螅幵谧钪虚g的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.4、C【解析】
利用復數(shù)模與除法運算即可得到結果.【詳解】解:,故選:C【點睛】本題考查復數(shù)除法運算,考查復數(shù)的模,考查計算能力,屬于基礎題.5、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應用,考查學生分析問題的能力,難度較易.6、C【解析】分析:利用復數(shù)的除法運算法則:分子、分母同乘以分母的共軛復數(shù),化簡復數(shù),然后求解復數(shù)的模.詳解:,則,故選c.點睛:復數(shù)是高考中的必考知識,主要考查復數(shù)的概念及復數(shù)的運算.要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復數(shù)這些重要概念,復數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉(zhuǎn)化為復數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.7、A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵.8、C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應寫準確,本題是一道基礎題.9、A【解析】
根據(jù)是與的等比中項,可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學生的計算能力,是中檔題.10、C【解析】
根據(jù),再根據(jù)二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數(shù)學運算能力11、C【解析】
在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎題.12、D【解析】
首先求得,然后根據(jù)復數(shù)乘法運算、共軛復數(shù)、復數(shù)的模、復數(shù)除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數(shù),則,所以A選項不正確;復數(shù)的共軛復數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數(shù)的幾何意義,共軛復數(shù),復數(shù)的模,復數(shù)的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結合思想.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實數(shù)的取值范圍為.故答案為:【點睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調(diào)性.14、【解析】
根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計算能力.15、360【解析】
先計算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點睛】本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運算求解能力以及數(shù)形結合思想,屬于基礎題.16、【解析】
根據(jù)滿足約束條件,畫出可行域,將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數(shù)取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結合的思想方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)可證面,從而可得.(2)可證點為線段的三等分點,再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標系,利用兩個平面的法向量來計算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關系式可求.【詳解】證明:(1)因為為中點,所以.因為平面平面,平面平面,平面,所以平面,而平面,故,又因為,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線與平面所成的角,即.因為,所以,所以,所以,即點為線段的三等分點.解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因為,,,則在中,有,所以二面角的平面角的正切值為.解法二:以點為原點,建立如圖所示的空間直角坐標系,則,設點,由得:,即,,,點,平面的一個法向量,又,,設平面的一個法向量為,則,令,則平面的一個法向量為.設二面角的平面角為,則,即,所以二面角的正切值為.【點睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關系的轉(zhuǎn)化.空間中的角的計算,可以建立空間直角坐標系把角的計算歸結為向量的夾角的計算,也可以構建空間角,把角的計算歸結平面圖形中的角的計算.18、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見解析【解析】
(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉(zhuǎn)化為函數(shù)的最值問題來處理.【詳解】由已知,,若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減.(2)由題意,對求導可得從而,是的兩個變號零點,因此下證:,即證令,即證:,對求導可得,,,因為故,所以在上單調(diào)遞減,而,從而所以在單調(diào)遞增,所以,即于是【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性以及證明不等式,考查學生邏輯推理能力、轉(zhuǎn)化與化歸能力,是一道有一定難度的壓軸題.19、(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題..20、(1)(2)1或6【解析】
(1)設,根據(jù)變換可得關于的方程,解方程即可得到答案;(2)求出特征多項式,再解方程,即可得答案;【詳解】(1)設,則,,即,解得,則.(2)設矩陣的特征多項式為,可得,令,可得或.【點睛】本題考查矩陣的求解、矩陣的特征值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.21、(Ⅰ)C的方程為,焦點F的坐標為(1,0);(Ⅱ)1【解析】
(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點F的坐標;
(Ⅱ)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0,設直線AB的方程為y=k(x+1)?1(k≠0),與拋物線聯(lián)立可得ky1-4y+4k-8=0,利用韋達定理以及弦長公式,轉(zhuǎn)化求解|MF|?|NF|的值.【詳解】(Ⅰ)由已知得,所以p=1.所以拋物線C的方程為,焦點F的坐標為(1,0);(II)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0.設直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年二手鋼琴租賃合同(2篇)
- 2025年個人試用期勞動合同樣本(三篇)
- 城市公園碎石配送保障協(xié)議
- 國際貿(mào)易攪拌車運輸協(xié)議
- 化工品物流合同安全范本
- 專業(yè)物流合同模板
- 湖南實驗室裝修合同樣本
- 產(chǎn)業(yè)扶持用地居間協(xié)議模板
- 旅游用地居間合同范本
- 會議室簡易改造合同樣本
- 初中英語人教版 八年級上冊 單詞默寫表 漢譯英
- pcs-9611d-x說明書國內(nèi)中文標準版
- 無人機航拍技術理論考核試題題庫及答案
- T∕CMATB 9002-2021 兒童肉類制品通用要求
- 工序勞務分包管理課件
- 工藝評審報告
- 中國滑雪運動安全規(guī)范
- 畢業(yè)論文-基于51單片機的智能LED照明燈的設計
- 酒廠食品召回制度
- 中職數(shù)學基礎模塊上冊第一章《集合》單元檢測試習題及參考答案
- 化學魯科版必修一期末復習98頁PPT課件
評論
0/150
提交評論