黑龍江七臺河市2025屆高三下第一次測試數(shù)學(xué)試題含解析_第1頁
黑龍江七臺河市2025屆高三下第一次測試數(shù)學(xué)試題含解析_第2頁
黑龍江七臺河市2025屆高三下第一次測試數(shù)學(xué)試題含解析_第3頁
黑龍江七臺河市2025屆高三下第一次測試數(shù)學(xué)試題含解析_第4頁
黑龍江七臺河市2025屆高三下第一次測試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江七臺河市2025屆高三下第一次測試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.2.已知函數(shù),,且在上是單調(diào)函數(shù),則下列說法正確的是()A. B.C.函數(shù)在上單調(diào)遞減 D.函數(shù)的圖像關(guān)于點對稱3.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.4.下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.5.已知實數(shù),,函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.6.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.37.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.458.在中,已知,,,為線段上的一點,且,則的最小值為()A. B. C. D.9.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.10.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.11.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.12.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等比數(shù)列的前項和為,若,則數(shù)列的公比是.14.設(shè)為等比數(shù)列的前項和,若,且,,成等差數(shù)列,則.15.平行四邊形中,,為邊上一點(不與重合),將平行四邊形沿折起,使五點均在一個球面上,當四棱錐體積最大時,球的表面積為________.16.已知等差數(shù)列的前項和為,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當游戲得分為時,游戲停止,記得分的概率和為.①求;②當時,記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.18.(12分)如圖,已知四棱錐,底面為邊長為2的菱形,平面,,是的中點,.(Ⅰ)證明:;(Ⅱ)若為上的動點,求與平面所成最大角的正切值.19.(12分)某芯片公司為制定下一年的研發(fā)投入計劃,需了解年研發(fā)資金投入量x(單位:億元)對年銷售額y(單位:億元)的影響.該公司對歷史數(shù)據(jù)進行對比分析,建立了兩個函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點圖及一些統(tǒng)計量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達到90億元,預(yù)測下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e20.(12分)已知函數(shù),.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當時,的最大值為,求證:.21.(12分)已知正項數(shù)列的前項和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項數(shù)列的前項和為,若,且.①求數(shù)列的通項公式;②求證:.22.(10分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設(shè),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.2、B【解析】

根據(jù)函數(shù),在上是單調(diào)函數(shù),確定,然后一一驗證,A.若,則,由,得,但.B.由,,確定,再求解驗證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計算是否為0.【詳解】因為函數(shù),在上是單調(diào)函數(shù),所以,即,所以,若,則,又因為,即,解得,而,故A錯誤.由,不妨令,得由,得或當時,,不合題意.當時,,此時所以,故B正確.因為,函數(shù),在上是單調(diào)遞增,故C錯誤.,故D錯誤.故選:B【點睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用,還考查了運算求解的能力,屬于較難的題.3、A【解析】

根據(jù)向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數(shù)量積的運算,向量數(shù)量積的性質(zhì),屬于中檔題.4、C【解析】

根據(jù)函數(shù)的對稱性和單調(diào)性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關(guān)于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關(guān)于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.5、D【解析】

根據(jù)題意,對于函數(shù)分2段分析:當,由指數(shù)函數(shù)的性質(zhì)分析可得①,當,由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,

當,若為增函數(shù),則①,

當,若為增函數(shù),必有在上恒成立,

變形可得:,

又由,可得在上單調(diào)遞減,則,

若在上恒成立,則有②,

若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③

聯(lián)立①②③可得:.

故選:D.【點睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).6、B【解析】

根據(jù)極值點處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,,,經(jīng)檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.7、B【解析】

計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.8、A【解析】

在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標系,根據(jù)已知條件結(jié)合向量的坐標運算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標系,則、、,為線段上的一點,則存在實數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當且僅當時,等號成立,因此,的最小值為.故選:A.【點睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解是一個單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個關(guān)鍵點在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計算能力,屬于難題.9、D【解析】

由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.10、D【解析】

由,可求出等比數(shù)列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.【點睛】本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計算求解能力,屬于中檔題.11、C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,

又因為名女干部不能單獨成一組,則不同的派遣方案種數(shù)為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.12、D【解析】

由題意結(jié)合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過點,求出,即可求得答案【詳解】由函數(shù)圖象可知:,函數(shù)的圖象過點,,則故選【點睛】本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數(shù)的周期、最值,代入已知點坐標求出結(jié)果二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

當q=1時,.當時,,所以.14、.【解析】試題分析:∵,,成等差數(shù)列,∴,又∵等比數(shù)列,∴.考點:等差數(shù)列與等比數(shù)列的性質(zhì).【名師點睛】本題主要考查等差與等比數(shù)列的性質(zhì),屬于容易題,在解題過程中,需要建立關(guān)于等比數(shù)列基本量的方程即可求解,考查學(xué)生等價轉(zhuǎn)化的思想與方程思想.15、【解析】

依題意可得、、、四點共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當且僅當面面時體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點共圓,所以因為,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當面面時,取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點睛】本題考查多面體的外接球的相關(guān)計算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.16、【解析】

根據(jù)等差數(shù)列的性質(zhì)求得,結(jié)合等差數(shù)列前項和公式求得的值.【詳解】因為為等差數(shù)列,所以,解得,所以.故答案為:【點睛】本小題考查等差數(shù)列的性質(zhì),前項和公式的應(yīng)用等基礎(chǔ)知識;考查運算求解能力,應(yīng)用意識.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析,數(shù)學(xué)期望為6;(2)①;②證明見解析【解析】

(1)變量的所有可能取值為4,5,6,7,8,分別求出對應(yīng)的概率,進而可求出變量的分布列和數(shù)學(xué)期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當且時,,結(jié)合,可推出,從而可證明數(shù)列為常數(shù)列;結(jié)合,可推出,進而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學(xué)期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時,有,則時,,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點睛】本題考查離散型隨機變量的分布列及數(shù)學(xué)期望,考查常數(shù)列及等比數(shù)列的證明,考查學(xué)生的計算求解能力與推理論證能力,屬于中檔題.18、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)由底面為邊長為2的菱形,平面,,易證平面,可得;(Ⅱ)連結(jié),由(Ⅰ)易知為與平面所成的角,在中,可求得.試題解析:(Ⅰ)∵四邊形為菱形,且,∴為正三角形,又為中點,∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)連結(jié),由(Ⅰ)知平面,∴為與平面所成的角,在中,,最大當且僅當最短,即時最大,依題意,此時,在中,,∴,,∴與平面所成最大角的正切值為.考點:1.線線垂直證明;2.求線面角.19、(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解析】

(1)由相關(guān)系數(shù)求出兩個系數(shù),比較大小可得;(2)(i)先建立U額R0關(guān)于x的線性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【詳解】本小題主要考查回歸分析等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運算求解能力、抽象概括能力及應(yīng)用意識,考查統(tǒng)計與概率思想、分類與整合思想,考查數(shù)學(xué)抽象、數(shù)學(xué)運算、數(shù)學(xué)建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U額R0關(guān)于x所以lny=0.02x+3.84(ii)下一年銷售額y需達到90億元,即y=90,代入y=e0.02x+3.84又e4.4998≈90,所以所以x≈4.4998-3.84所以預(yù)測下一年的研發(fā)資金投入量約是32.99億元【點睛】本小題主要考查拋物線的定義、拋物線的標準方程、直線與拋物線的位置關(guān)系、導(dǎo)數(shù)幾何意義等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等,考查數(shù)學(xué)運算、直觀想象、邏輯推理等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性20、(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當時,令,即,令,即(i)當,即時,在上單調(diào)遞增,所以在上的最小值是(ii)當,即時,由的單調(diào)性可得在上的最小值是(iii)當,即時,在上單調(diào)遞減,在上的最小值是(Ⅲ)當時,令,則是單調(diào)遞減函數(shù).因為,,所以在上存在,使得,即討論可得在上單調(diào)遞增,在上單調(diào)遞減.所以當時,取得最大值是因為,所以由此可證試題解析:(Ⅰ)因為函數(shù),且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因為函數(shù),所以(1)當時,,所以在上單調(diào)遞增.所以函數(shù)在上的最小值是(2)當時,令,即,所以令,即,所以(i)當,即時,在上單調(diào)遞增,所以在上的最小值是(ii)當,即時,在上單調(diào)遞減,在上單調(diào)遞增,所以在上的最小值是(iii)當,即時,在上單調(diào)遞減,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論