江西電力職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
江西電力職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
江西電力職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€(xiàn)…………第1頁(yè),共1頁(yè)江西電力職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行分類(lèi)。以下關(guān)于分類(lèi)算法的描述,錯(cuò)誤的是:()A.決策樹(shù)算法易于理解和解釋B.支持向量機(jī)在處理高維數(shù)據(jù)時(shí)表現(xiàn)出色C.K近鄰算法對(duì)異常值不敏感D.樸素貝葉斯算法假設(shè)各個(gè)特征之間相互獨(dú)立2、數(shù)據(jù)分析中,數(shù)據(jù)安全策略的制定應(yīng)考慮多方面因素。以下關(guān)于數(shù)據(jù)安全策略制定的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)安全策略的制定應(yīng)包括數(shù)據(jù)的加密、備份、訪問(wèn)控制和審計(jì)等方面B.數(shù)據(jù)安全策略的制定應(yīng)根據(jù)數(shù)據(jù)的重要性和敏感性來(lái)確定不同的安全級(jí)別C.數(shù)據(jù)安全策略的制定應(yīng)定期進(jìn)行評(píng)估和調(diào)整,以適應(yīng)不斷變化的安全環(huán)境D.數(shù)據(jù)安全策略的制定只需要考慮企業(yè)內(nèi)部的安全需求,不需要考慮外部的安全威脅3、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測(cè)未來(lái)值是常見(jiàn)的任務(wù)。假設(shè)你要預(yù)測(cè)股票價(jià)格的未來(lái)走勢(shì),以下關(guān)于時(shí)間序列模型的選擇,哪一項(xiàng)是最需要謹(jǐn)慎考慮的?()A.選擇簡(jiǎn)單的移動(dòng)平均模型,基于歷史均值進(jìn)行預(yù)測(cè)B.應(yīng)用自回歸整合移動(dòng)平均(ARIMA)模型,考慮序列的趨勢(shì)和季節(jié)性C.采用深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)D.不考慮時(shí)間序列的特點(diǎn),使用通用的回歸模型4、在數(shù)據(jù)分析的市場(chǎng)調(diào)研中,假設(shè)要了解消費(fèi)者對(duì)新產(chǎn)品的偏好和需求。以下哪種數(shù)據(jù)收集方法可能獲得更深入和真實(shí)的反饋?()A.在線(xiàn)調(diào)查問(wèn)卷B.面對(duì)面訪談C.電話(huà)調(diào)查D.不進(jìn)行調(diào)研,依靠以往經(jīng)驗(yàn)推測(cè)5、關(guān)于數(shù)據(jù)分析中的客戶(hù)細(xì)分,假設(shè)要根據(jù)客戶(hù)的購(gòu)買(mǎi)行為、人口統(tǒng)計(jì)信息和在線(xiàn)活動(dòng)將客戶(hù)分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶(hù)的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時(shí)間B.基于聚類(lèi)的細(xì)分,自動(dòng)發(fā)現(xiàn)相似群體C.基于決策樹(shù)的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶(hù)細(xì)分,對(duì)所有客戶(hù)采用相同的策略6、數(shù)據(jù)分析中的倫理和道德問(wèn)題也需要引起關(guān)注。假設(shè)要使用個(gè)人數(shù)據(jù)進(jìn)行分析,以下關(guān)于倫理和道德原則的描述,正確的是:()A.未經(jīng)用戶(hù)授權(quán),擅自使用個(gè)人數(shù)據(jù)進(jìn)行分析B.不明確告知用戶(hù)數(shù)據(jù)的使用目的和方式,侵犯用戶(hù)知情權(quán)C.遵循合法、公正、透明、最小化使用和安全保障等原則,在獲得用戶(hù)明確授權(quán)的前提下,合理使用個(gè)人數(shù)據(jù),并采取措施保護(hù)用戶(hù)隱私和權(quán)益D.認(rèn)為數(shù)據(jù)分析中的倫理和道德問(wèn)題不重要,只要能得到有價(jià)值的結(jié)果就行7、對(duì)于一個(gè)包含多個(gè)數(shù)值型變量的數(shù)據(jù)集,若要判斷數(shù)據(jù)是否符合正態(tài)分布,應(yīng)采用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.卡方檢驗(yàn)C.正態(tài)性檢驗(yàn)D.F檢驗(yàn)8、在數(shù)據(jù)挖掘中,若要發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和關(guān)聯(lián)規(guī)則,以下哪種算法是常用的?()A.Apriori算法B.KNN算法C.SVM算法D.隨機(jī)森林算法9、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶(hù)信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)刪除包含大量缺失值的記錄來(lái)簡(jiǎn)化數(shù)據(jù),但可能會(huì)丟失有價(jià)值的信息B.對(duì)于錯(cuò)誤的數(shù)據(jù),可以根據(jù)數(shù)據(jù)的分布和邏輯關(guān)系進(jìn)行修正或刪除C.重復(fù)記錄的處理只需保留其中一條,對(duì)分析結(jié)果沒(méi)有實(shí)質(zhì)性影響D.數(shù)據(jù)清洗的目的是提高數(shù)據(jù)質(zhì)量,為后續(xù)的分析提供可靠的數(shù)據(jù)基礎(chǔ)10、在進(jìn)行數(shù)據(jù)分析以評(píng)估一個(gè)新的市場(chǎng)營(yíng)銷(xiāo)活動(dòng)的效果時(shí),比如分析活動(dòng)前后的客戶(hù)流量、購(gòu)買(mǎi)轉(zhuǎn)化率和客戶(hù)滿(mǎn)意度等指標(biāo)的變化。由于活動(dòng)期間可能受到其他外部因素的干擾,為了準(zhǔn)確評(píng)估活動(dòng)的貢獻(xiàn),以下哪種方法可能是合適的?()A.建立對(duì)照組進(jìn)行對(duì)比B.只關(guān)注活動(dòng)期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗(yàn)主觀判斷11、數(shù)據(jù)分析中的異常檢測(cè)用于發(fā)現(xiàn)數(shù)據(jù)中的異常值或離群點(diǎn)。假設(shè)我們?cè)诜治錾a(chǎn)線(xiàn)上的產(chǎn)品質(zhì)量數(shù)據(jù),以下哪種異常檢測(cè)方法可能適用于檢測(cè)突然出現(xiàn)的質(zhì)量下降?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.以上都是12、假設(shè)要分析一個(gè)零售企業(yè)的庫(kù)存數(shù)據(jù),包括商品種類(lèi)、庫(kù)存數(shù)量、銷(xiāo)售速度等,以制定合理的補(bǔ)貨策略。以下哪個(gè)因素可能對(duì)庫(kù)存管理的效率產(chǎn)生最大影響?()A.商品的銷(xiāo)售預(yù)測(cè)準(zhǔn)確性B.供應(yīng)商的交貨時(shí)間C.庫(kù)存成本D.以上都是13、在處理不平衡數(shù)據(jù)集時(shí),即某些類(lèi)別樣本數(shù)量遠(yuǎn)少于其他類(lèi)別,以下關(guān)于數(shù)據(jù)分析方法的調(diào)整,哪一項(xiàng)是最有效的?()A.直接使用常規(guī)的分類(lèi)算法,不做特殊處理B.對(duì)少數(shù)類(lèi)樣本進(jìn)行過(guò)采樣,增加其數(shù)量C.對(duì)多數(shù)類(lèi)樣本進(jìn)行欠采樣,減少其數(shù)量D.以上三種方法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)進(jìn)行優(yōu)化14、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的有效性可以通過(guò)多種方式進(jìn)行評(píng)估。以下關(guān)于數(shù)據(jù)分析方法有效性評(píng)估的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)分析方法的有效性可以通過(guò)與實(shí)際情況進(jìn)行對(duì)比來(lái)評(píng)估B.數(shù)據(jù)分析方法的有效性可以通過(guò)與其他方法進(jìn)行比較來(lái)評(píng)估C.數(shù)據(jù)分析方法的有效性可以通過(guò)模擬數(shù)據(jù)進(jìn)行測(cè)試來(lái)評(píng)估D.數(shù)據(jù)分析方法的有效性一旦確定就不能再進(jìn)行調(diào)整和改進(jìn)15、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持對(duì)總體的某種假設(shè)。假設(shè)我們想要檢驗(yàn)一種新的營(yíng)銷(xiāo)策略是否顯著提高了產(chǎn)品的銷(xiāo)售額,設(shè)定顯著性水平為0.05。如果計(jì)算得到的p值小于0.05,我們可以得出什么結(jié)論?()A.新的營(yíng)銷(xiāo)策略顯著提高了銷(xiāo)售額B.新的營(yíng)銷(xiāo)策略沒(méi)有顯著提高銷(xiāo)售額C.無(wú)法確定新策略對(duì)銷(xiāo)售額的影響D.以上結(jié)論都不正確16、在進(jìn)行數(shù)據(jù)倉(cāng)庫(kù)設(shè)計(jì)時(shí),需要考慮數(shù)據(jù)的存儲(chǔ)和組織方式。假設(shè)一個(gè)企業(yè)有大量的銷(xiāo)售、庫(kù)存和客戶(hù)數(shù)據(jù),以下哪種數(shù)據(jù)模型可能最適合用于構(gòu)建數(shù)據(jù)倉(cāng)庫(kù)?()A.星型模型B.雪花模型C.關(guān)系模型D.網(wǎng)狀模型17、在數(shù)據(jù)分析中,數(shù)據(jù)分析的流程包括多個(gè)步驟,其中數(shù)據(jù)探索是一個(gè)重要的步驟。以下關(guān)于數(shù)據(jù)探索的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)探索可以幫助人們了解數(shù)據(jù)的特征和分布B.數(shù)據(jù)探索可以發(fā)現(xiàn)數(shù)據(jù)中的異常值和噪聲C.數(shù)據(jù)探索可以確定數(shù)據(jù)分析的方法和工具D.數(shù)據(jù)探索只需要對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的統(tǒng)計(jì)分析,無(wú)需進(jìn)行深入的挖掘和探索18、在進(jìn)行數(shù)據(jù)分析時(shí),異常值的檢測(cè)和處理是重要的環(huán)節(jié)。假設(shè)我們?cè)诜治鲆唤M生產(chǎn)線(xiàn)上的產(chǎn)品質(zhì)量數(shù)據(jù)。以下關(guān)于異常值的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.異常值可能是由于數(shù)據(jù)錄入錯(cuò)誤或特殊情況導(dǎo)致的B.可以通過(guò)箱線(xiàn)圖等方法直觀地檢測(cè)異常值C.對(duì)于異常值,應(yīng)該立即刪除,以免影響分析結(jié)果D.對(duì)異常值的處理需要根據(jù)具體情況進(jìn)行判斷,有時(shí)需要進(jìn)一步調(diào)查原因19、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析客戶(hù)購(gòu)買(mǎi)行為與促銷(xiāo)活動(dòng)之間的關(guān)聯(lián),以下關(guān)于關(guān)聯(lián)分析方法的描述,正確的是:()A.只關(guān)注表面的關(guān)聯(lián),不深入分析內(nèi)在的因果關(guān)系B.不考慮數(shù)據(jù)的分布和異常值,直接進(jìn)行關(guān)聯(lián)分析C.運(yùn)用關(guān)聯(lián)規(guī)則挖掘、相關(guān)性分析等方法,同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)背景,挖掘有價(jià)值的關(guān)聯(lián)模式,并對(duì)結(jié)果進(jìn)行解釋和驗(yàn)證D.認(rèn)為關(guān)聯(lián)分析結(jié)果一定能直接用于制定營(yíng)銷(xiāo)策略,不進(jìn)行進(jìn)一步的評(píng)估和優(yōu)化20、假設(shè)要對(duì)大量數(shù)據(jù)進(jìn)行快速排序,以下哪種算法在平均情況下性能較好?()A.冒泡排序B.插入排序C.快速排序D.選擇排序二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)描述數(shù)據(jù)挖掘中的文本挖掘任務(wù),如文本分類(lèi)、情感分析等的主要方法和技術(shù),并舉例說(shuō)明在社交媒體數(shù)據(jù)分析中的應(yīng)用。2、(本題5分)在數(shù)據(jù)分析中,數(shù)據(jù)清洗是非常重要的一個(gè)環(huán)節(jié),請(qǐng)解釋數(shù)據(jù)清洗的主要步驟以及每個(gè)步驟的目的和常用方法。3、(本題5分)解釋數(shù)據(jù)可視化中的可視化布局原則,說(shuō)明如何通過(guò)合理的布局組織數(shù)據(jù)元素,提高可視化的可讀性和美觀性。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)一家美容美發(fā)連鎖機(jī)構(gòu)收集了各門(mén)店的服務(wù)項(xiàng)目銷(xiāo)售數(shù)據(jù)、客戶(hù)滿(mǎn)意度、員工績(jī)效等。優(yōu)化服務(wù)項(xiàng)目和員工培訓(xùn),提高門(mén)店經(jīng)營(yíng)效益。2、(本題5分)某在線(xiàn)古玩交易平臺(tái)掌握了交易數(shù)據(jù)、藏品類(lèi)別、買(mǎi)家偏好等。提升平臺(tái)的信譽(yù)和交易安全性。3、(本題5分)某在線(xiàn)書(shū)法作品交易平臺(tái)保存了交易數(shù)據(jù)、作品風(fēng)格熱度、買(mǎi)家收藏偏好等。提升書(shū)法作品交易的活躍度和市場(chǎng)影響力。4、(本題5分)某在線(xiàn)漫畫(huà)平臺(tái)保存了漫畫(huà)點(diǎn)擊量、用戶(hù)評(píng)論、付費(fèi)意愿等數(shù)據(jù)。分析漫畫(huà)市場(chǎng)需求,推出受歡迎的漫畫(huà)作品。5

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論