江蘇省南通市啟東中學2025屆高考數學三模試卷含解析_第1頁
江蘇省南通市啟東中學2025屆高考數學三模試卷含解析_第2頁
江蘇省南通市啟東中學2025屆高考數學三模試卷含解析_第3頁
江蘇省南通市啟東中學2025屆高考數學三模試卷含解析_第4頁
江蘇省南通市啟東中學2025屆高考數學三模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南通市啟東中學2025屆高考數學三模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.632.《九章算術》是我國古代內容極為豐富的數學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺3.若集合,,則()A. B. C. D.4.命題“”的否定是()A. B.C. D.5.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經過統計繪制如圖,其中各項統計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶C.在該市無業(yè)人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶6.若函數的圖象向右平移個單位長度得到函數的圖象,若函數在區(qū)間上單調遞增,則的最大值為().A. B. C. D.7.設函數,的定義域都為,且是奇函數,是偶函數,則下列結論正確的是()A.是偶函數 B.是奇函數C.是奇函數 D.是奇函數8.已知函數則函數的圖象的對稱軸方程為()A. B.C. D.9.以下三個命題:①在勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數為()A.3 B.2 C.1 D.010.已知函數,的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.11.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.12.如圖,在中,,且,則()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若關于的方程在定義域上有四個不同的解,則實數的取值范圍是_______.14.的二項展開式中,含項的系數為__________.15.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.16.設隨機變量服從正態(tài)分布,若,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大??;(2)求函數的值域.18.(12分)已知函數.(1)若不等式有解,求實數的取值范圍;(2)函數的最小值為,若正實數,,滿足,證明:.19.(12分)設函數,,其中,為正實數.(1)若的圖象總在函數的圖象的下方,求實數的取值范圍;(2)設,證明:對任意,都有.20.(12分)已知為各項均為整數的等差數列,為的前項和,若為和的等比中項,.(1)求數列的通項公式;(2)若,求最大的正整數,使得.21.(12分)已知數列的前項和為,且滿足.(1)求數列的通項公式;(2)若,,且數列前項和為,求的取值范圍.22.(10分)[選修45:不等式選講]已知都是正實數,且,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.2、A【解析】由題意,將楔體分割為三棱柱與兩個四棱錐的組合體,作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,

則將幾何體分成兩個四棱錐和1個直三棱柱,

則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點睛】本題考查三視圖及幾何體體積的計算,其中正確還原幾何體,利用方格數據分割與計算是解題的關鍵.3、B【解析】

根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.4、D【解析】

根據全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.5、D【解析】

根據給出的統計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業(yè)人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統計圖表的認識和分析,這類題要認真分析圖表的內容,讀懂圖表反映出的信息是解題的關鍵,屬于基礎題.6、C【解析】

由題意利用函數的圖象變換規(guī)律,正弦函數的單調性,求出的最大值.【詳解】解:把函數的圖象向右平移個單位長度得到函數的圖象,若函數在區(qū)間,上單調遞增,在區(qū)間,上,,,則當最大時,,求得,故選:C.【點睛】本題主要考查函數的圖象變換規(guī)律,正弦函數的單調性,屬于基礎題.7、C【解析】

根據函數奇偶性的性質即可得到結論.【詳解】解:是奇函數,是偶函數,,,,故函數是奇函數,故錯誤,為偶函數,故錯誤,是奇函數,故正確.為偶函數,故錯誤,故選:.【點睛】本題主要考查函數奇偶性的判斷,根據函數奇偶性的定義是解決本題的關鍵.8、C【解析】

,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數的對稱性的問題,在處理余弦型函數的性質時,一般采用整體法,結合三角函數的性質,是一道容易題.9、C【解析】

根據抽樣方式的特征,可判斷①;根據相關系數的性質,可判斷②;根據獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據抽樣是間隔相同,且樣本間無明顯差異,故①應是系統抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數、獨立性檢驗等知識點,屬于基礎題.10、D【解析】

由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數的解析式,又因為當時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數的最小正周期,則,所以,當時,,所以是函數的一條對稱軸,故選:D【點睛】本題主要考查利用和差公式恒等變形,以及考查三角函數的周期性和對稱性.11、B【解析】

設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.12、C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關系,再由三點共線,又得到一個關于的關系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關知識,結合圖形尋找各向量間的關系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可在定義域上有四個不同的解等價于關于原點對稱的函數與函數的圖象有兩個交點,運用參變分離和構造函數,進而借助導數分析單調性與極值,畫出函數圖象,即可得到所求范圍.【詳解】已知定義在上的函數若在定義域上有四個不同的解等價于關于原點對稱的函數與函數f(x)=lnx-x(x>0)的圖象有兩個交點,聯立可得有兩個解,即可設,則,進而且不恒為零,可得在單調遞增.由可得時,單調遞減;時,單調遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【點睛】本題考查利用利用導數解決方程的根的問題,還考查了等價轉化思想與函數對稱性的應用,屬于難題.14、【解析】

寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.15、【解析】

由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質.本題的關鍵是根據幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質,可大大減少計算量.16、1【解析】

由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質,意在考查學生對該知識的理解掌握水平和分析推理能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由向量平行的坐標表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數為,根據的范圍可確定的范圍,結合正弦函數圖象可確定所求函數的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數性質的綜合應用問題;涉及到共線向量的坐標表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應用、正弦型函數值域的求解等知識.18、(1)(2)見解析【解析】

(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設,∴在上單調遞減,在上單調遞增.故.∵有解,∴.即的取值范圍為.(2),當且僅當時等號成立.∴,即.∵.當且僅當,,時等號成立.∴,即成立.【點睛】此題考查不等式的證明,注意定值乘變化的靈活應用,屬于較易題目.19、(1)(2)證明見解析【解析】

(1)據題意可得在區(qū)間上恒成立,利用導數討論函數的單調性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當時,,利用導數判斷函數的單調性從而證明在區(qū)間上成立,從而證明對任意,都有.【詳解】(1)解:因為函數的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設,其中,所以,其中,.①當,即時,,所以函數在上單調遞增,,故成立,滿足題意.②當,即時,設,則圖象的對稱軸,,,所以在上存在唯一實根,設為,則,,,所以在上單調遞減,此時,不合題意.綜上可得,實數的取值范圍是.(2)證明:由題意得,因為當時,,,所以.令,則,所以在上單調遞增,,即,所以,從而.由(1)知當時,在上恒成立,整理得.令,則要證,只需證.因為,所以在上單調遞增,所以,即在上恒成立.綜上可得,對任意,都有成立.【點睛】本題考查導數在研究函數中的作用,利用導數判斷函數單調性與求函數最值,利用導數證明不等式,屬于難題.20、(1)(2)1008【解析】

(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數列為各項均為整數,所以,即(2)令所以即,解得所以的最大值為1008【點睛】本題考查等差數列的通項公式、前項和公式,考查裂項

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論