人工智能項目失敗的根本原因及其成功的方法_第1頁
人工智能項目失敗的根本原因及其成功的方法_第2頁
人工智能項目失敗的根本原因及其成功的方法_第3頁
人工智能項目失敗的根本原因及其成功的方法_第4頁
人工智能項目失敗的根本原因及其成功的方法_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

ResearchReport

JAMESRYSEFF,BRANDONDEBRUHL,SYDNEJ.NEWBERRY

TheRootCausesofFailure

forArtificialIntelligence

ProjectsandHowThey

CanSucceed

AvoidingtheAnti-PatternsofAI

rtificialintelligence(AI)iswidelyrecognizedastechnologywiththepotentialtohavea

transformativeeffectonorganizations.1AlthoughAIwasoncereservedforadvancedtech-

nologycompanieswiththeabilitytohiretoptalentandspendmillionsofdollars,alltypes

A

oforganizationsareadoptingAItoday.Private-sectorinvestmentinAIincreased18-foldfrom2013to2022,2andonesurveyfoundthat58percentofmidsizecorporations3haddeployedatleastoneAImodeltoproduction.4Similarly,theU.S.DepartmentofDefense(DoD)isspending$1.8billioneachyearonmilitaryapplicationsforAI,andDoDleadershaveidentifiedAIasoneofthemostcrucialtechnologiestothefutureofwarfare.5

AIisalreadymakingimpactsacrossawidevarietyofindustries.Pharmaceuticalcompaniesareusingittoacceleratethepaceandsuccessrateofdrugdevelopment.6Retailers,suchasWalmart,aredeployingAIforpredictiveanalyticssothattheyknowwhentorestockinventoryandhowtooptimizetheirend-to-endsupplychains.7Finally,inthedefenserealm,AIispilotingfighterjets,8detecting

enemysubmarines,9andimprovingcommanders’awarenessofthebattlefield.10Theseexamplesdem-onstratetherelevanceofAItoorganizationsinavarietyofindustriesandforavarietyofusecases.

However,despitethepromiseandhypearoundAI,manyorganizationsarestrugglingto

deliverworkingAIapplications.Onesurveyfoundthatonly14percentoforganizationsrespondedthattheywerefullyreadytoadoptAI,eventhough84percentofbusinessleadersreportedthat

theybelievethatAIwillhaveasignificantimpactontheirbusiness.11Managersanddirectorsfindthemselvesunderenormouspressuretodosomething—anything—withAItodemonstratetotheirsuperiorsthattheyarekeepingupwiththerapidadvanceoftechnology.12Buttoomanymanagershavelittleunderstandingofhowtotranslatethisdesireintoaction.Bysomeestimates,morethan80percentofAIprojectsfail.13Thisistwicethealready-highrateoffailureincorporateinformationtechnology(IT)projectsthatdonotinvolveAI.14

SUMMARY

2

Background

Althoughleaderswidelyrecognizetheimportanceofartificialintelligence(AI),successfullyimplementingAI

projectsremainsaseriouschallenge.aAccordingtoonesurvey,84percentofbusinessleadersrespondedthattheybelievethatAIwillhaveasignificantimpactontheirbusiness,and97percentofbusinessleadersreportedthattheurgencytodeployAI-poweredtechnologieshasincreased.bDespitethis,thesamesurveyfoundthat

only14percentoforganizationsrespondedthattheywerefullyreadytointegrateAIintotheirbusinesses.

Bysomeestimates,morethan80percentofAIprojectsfail—twicetherateoffailureforinformationtechnol-

ogyprojectsthatdonotinvolveAI.cThus,understandinghowtotranslateAI’senormouspotentialintoconcreteresultsremainsanurgentchallenge.Inthisreport,wedocumentlessonslearnedfromthosewhohavealreadyappliedAI/MLsothatU.S.DepartmentofDefenseleadershipandotherscanavoidthesefailuresormitigate

risksintheirplanning.

Approach

ToinvestigatewhyAIprojectsfail,weinterviewed65experienceddatascientistsandengineers.ParticipantshadatleastfiveyearsofexperiencebuildingAI/MLmodelsinindustryoracademia.Weselectedparticipantsacrossavarietyofcompanysizesandindustriestoensurethatthesefindingswouldbebroadlyrepresentative.Theoutputoftheseinterviewsissummarizedinthisanalysis.

Takeaways

OurinterviewshighlightedfiveleadingrootcausesofthefailureofAIprojects.First,industrystakeholdersoftenmisunderstand—ormiscommunicate—whatproblemneedstobesolvedusingAI.Toooften,trainedAImodelsaredeployedthathavebeenoptimizedforthewrongmetricsordonotfitintotheoverallbusinessworkflowandcontext.Second,manyAIprojectsfailbecausetheorganizationlacksthenecessarydatatoadequatelytrain

aneffectiveAImodel.Third,insomecases,AIprojectsfailbecausetheorganizationfocusesmoreonusingthelatestandgreatesttechnologythanonsolvingrealproblemsforitsintendedusers.Fourth,organizationsmightnothaveadequateinfrastructuretomanagetheirdataanddeploycompletedAImodels,whichincreasesthe

likelihoodofprojectfailure.Finally,insomecases,AIprojectsfailbecausethetechnologyisappliedtoprob-lemsthataretoodifficultforAItosolve.AIisnotamagicwandthatcanmakeanychallengingproblemdisap-pear;insomecases,eventhemostadvancedAImodelscannotautomateawayadifficulttask.

IndustryRecommendations

Toovercometheseissues,leadersshouldconsiderthesefiveprinciplesforsuccessinAIprojects:

?Ensurethattechnicalstaffunderstandtheprojectpurposeanddomaincontext:Misunderstandingsand

miscommunicationsabouttheintentandpurposeoftheprojectarethemostcommonreasonsforAIproj-ectfailure.EnsuringeffectiveinteractionsbetweenthetechnologistsandthebusinessexpertscanbethedifferencebetweensuccessandfailureforanAIproject.

?Chooseenduringproblems:AIprojectsrequiretimeandpatiencetocomplete.BeforetheybeginanyAIproject,leadersshouldbepreparedtocommiteachproductteamtosolvingaspecificproblemforat

leastayear.IfanAIprojectisnotworthsuchalong-termcommitment,itmostlikelyisnotworthcommit-tingtoatall.

?Focusontheproblem,notthetechnology:Successfulprojectsarelaser-focusedontheproblemtobesolved,notthetechnologyusedtosolveit.ChasingthelatestandgreatestadvancesinAIfortheirownsakeisoneofthemostfrequentpathwaystofailure.

3

?Investininfrastructure:Up-frontinvestmentsininfrastructuretosupportdatagovernanceandmodel

deploymentcansubstantiallyreducethetimerequiredtocompleteAIprojectsandcanincreasethevolumeofhigh-qualitydataavailabletotraineffectiveAImodels.

?UnderstandAI’slimitations:DespiteallthehypearoundAIasatechnology,AIstillhastechnicallimitationsthatcannotalwaysbeovercome.WhenconsideringapotentialAIproject,leadersneedtoincludetechnicalexpertstoassesstheproject’sfeasibility.

AcademiaRecommendations

Toovercometheissuesdescribedbyouracademicinterviewees,leadersshouldconsiderthesetworecommendations:

?Overcomedata-collectionbarriersthroughpartnershipswithgovernment:Partnershipsbetween

academiaandgovernmentagenciescouldgiveresearchersaccesstodataoftheprovenanceneededforacademicresearch.ThefederalgovernmentshouldexpanditsinvestmentinsuchprogramsasD(theU.S.government’sopendatasite)andseektoincreasethenumberofdatasetsavailableforresearch.

?Expanddoctoralprogramsindatascienceforpractitioners:Neweracademicsoftenfeelpressuretofocusonresearchthatleadstocareersuccessasopposedtoresearchthathasthemostpotentialtosolveimportantproblems.Computerscienceanddatascienceprogramleadersshouldlearnfromdisciplines,

suchasinternationalrelations,inwhichpractitionerdoctoralprogramsoftenexistsidebysideateventhetop-rankeduniversitiestoprovidepathwaysforthemost-advancedresearcherstoapplytheirfindingstourgentproblems.

aForthisproject,wefocusedonthemachinelearning(ML)branchofAIbecausethatisthetechnologyunderpinningmostbusinessapplicationsofAItoday.ThisincludesAImodelstrainedusingsupervisedlearning,unsupervisedlearning,or

reinforcementlearningapproachesandlargelanguagemodels(LLMs).ProjectsthatsimplyusedpretrainedLLMs(some-timesknownaspromptengineering)werenotincludedinthescopeofthiswork.

bCiscoAIReadinessIndex.

cKahn,“WantYourCompany’sAIProjecttoSucceed?”

Thepurposeofthisexploratoryanalysisistohelpleadersandmanagerswithinalltypesoforga-nizationswhoarestrugglingtounderstandhow

toexecuteAIprojectsintheirorganizationavoid

someofthemostcommonreasonsforAIproject

failures.Todoso,weinterviewed65experiencedAIengineersandresearchersacrossavarietyofcom-paniesandindustries,aswellasacademia.From

theseinterviews,weidentifiedthemostfrequentlyreportedanti-patternsofAI—commonresponsestorecurringproblemsthataretypicallyineffectiveorevencounterproductive.15Wehopetohelporga-nizationsavoidmakingthesecommonmistakes

andtoprovideleadersandmanagersendeavoringtounderstandAIwithpracticaladvicetohelpthemgetstarted.

AIprojectshavetwocomponents:thetechnologyasaplatform(i.e.,thedevelopment,use,anddeploy-mentofAItocompletesomesetofbusinesstasks)andtheorganizationoftheproject(i.e.,theprocess,struc-

ture,andplaceintheoverallorganization).ThesetwoelementsenableorganizationsandAItoolstowork

togethertosolvepressingbusinessproblems.16

IT-typeprojectscanfailformanyreasonsnot

relatedtothetechnologyitself.Forexample,projectscanfailbecauseofprocessfailures(i.e.,flawsinthewaytheprojectisexecuted),interactionfailures(i.e.,problemswithhowhumansinteractwiththetech-nology),orexpectationfailures(i.e.,amisalignmentintheanticipatedvalueoftheproject).17Breakdownsinanycomponentcouldresultinaprojectfailure,

whichresultsinincreasedcostsforthesponsoring

enterprise.ThereisalargebodyofliteratureonhowITprojectsfail.However,AIseemstohavedifferentprojectcharacteristics,suchascostlylaborandcapi-talrequirementsandhighalgorithmcomplexity,thatmakethemunlikeatraditionalinformationsystem.18

Thehigh-profilenatureofAImayincreasethedesireforstakeholderstobetterunderstandwhatdrivestheriskofITprojectsrelatedtoAI.

4

Mostpriorworkonthistopichastakenoneoftwoforms.Insomecases,anindividualdatascien-tistormanagerdiscussestheirpersonalexperiencesandbeliefsaboutwhatcausesAIprojectstofail.19Inothercases,consultingfirmsconductawidespreadsurveyofITleaderstodiscusstheirexperiences

withAI.20Forexample,McKinseyhasconducted

anannualsurveyaboutAIforseveralyears.21Addi-tionally,onestudyconductedasystematicliteraturereviewandinterviewswithsixexpertstoexplorethefactorsthatmightcausegeneralAIprojectstofail.22

Ourstudydiffersfromthispriorworkinseveralways.First,wefocusontheperspectiveoftheindi-

vidualsbuildingAIapplicationsasopposedtothe

businessleadersoftheorganization.Abottom-up

approachallowsustodiscusswhyAIprojectsfail

fromthepointofviewofthepeoplewhointimatelyunderstandthespecificsofthetechnology.Second,weconductedsemistructuredinterviewsasopposedtorelyingonmultiple-choiceorshort-answersurveyquestions.Althoughtheburdenofconducting

interviewsmeansthatthesamplesizeofthisstudyissmallercomparedwiththoseofmultiple-choice

surveystudies,thisapproachallowedustoexploretheissuesraisedingreaternuanceanddepth.Finally,weconductedsubstantiallymoresemistructured

interviewswithexpertscomparedwithpriorauthorswhotookthisapproach.

Methods

Togatherdataforthisreport,weconductedsemi-

structuredinterviewswithexperiencedAIpractitio-nersinbothindustryandacademia.Duringthese

interviews,wedefinedthefailureofanAIprojectasaprojectthatwasperceivedtobeafailurebytheorga-

nization.Weincludedbothtechnicalfailuresand

businessfailureswithinthisdefinition.Eachinter-

vieweewasaskedtodiscussthetypesoffailuresthattheyperceivedtobethemostfrequentorimpactful

andwhattheybelievedtherootcausesofthesefail-ureswere.Wethenidentifiedcommonrootcauses

basedontheinterviewresponses.Theinterviews

wereconductedbetweenAugustandDecember2023.

Theapproachtakeninthisreporthasstrengthsandweaknesses.Conductinginterviewswithopen-

endedquestionsofexperienceddatascientistsandMLengineersallowedustodiscoverwhatthese

professionalsbelievearethegreatestproblemsandchallengeswhenattemptingtoexecuteAIprojects.However,becausethemajorityofourinterviewees

werenonmanagerialengineersinsteadofbusinessexecutives,theresultsmaydisproportionatelyreflecttheperspectiveofindividualswhodonotholdlead-ershippositions.Thus,theresultsmaybeskewed

towardidentifyingleadershipfailures.

IndustryParticipants

WeidentifiedpotentialindustryparticipantsusingtheLinkedInRecruitertoolandLinkedInInMail

messages.Potentialparticipantshadatleastfive

yearsofAI/MLexperienceinindustryandjobtitlesthatindicatedthattheywereeitheranindividual

contributororamanagerinthedatascienceorMLengineeringtechnicaldisciplines.23Weselected

participantstorepresentavarietyofexperiences

andbackgrounds.Inparticular,weselectedpar-

ticipantsfromdifferentcompanysizes(start-ups,

largecompanies,andmedium-sizedcompanies)andindustries(technology,healthcare,finance,retail,consulting,andothers).Industryparticipantswereoffereda$100honorariumforagreeingtotakepartina45-minuteinterview.

Atotalof379potentialindustrycandidateswereidentifiedandcontacted.Ofthese,50individuals

ultimatelyparticipatedinaninterview,represent-ingmorethan50uniqueorganizations.24Fourteenindividualssentamessagedecliningtoparticipateinthestudy;theseindividualswereremovedfromthecandidatepoolandhadnofurthercontactfromthestudyteam.25Table1illustratesthepercentagesofpotentialcandidateswhoeitherparticipatedordeclinedtoparticipateinthestudy.

Industryinterviewsusedaconsistentbatteryofquestions,whichisprovidedinAppendixA.Allinterviewswereconductedwithapromiseofanonymitytoensurethatparticipantsfeltfreetospeakcandidlyabouttheirexperiences.

5

AcademiaParticipants

Weconducted15interviewsofacademicsdrawn

fromconveniencesamplesduringconferencesandfromindividualsknowntotheresearchteam.Theseinterviewsrangedacrossschooltypes(e.g.,engi-

neeringprogramsandbusinessschools)anddegreelevels(e.g.,tenure-trackresearcher,non–tenure-trackresearcher,graduatestudent,andundergraduate

orresearchassistant).Theseinterviewsusedacon-sistentbatteryofquestions,whichispresentedin

AppendixB.Ourinterviewswereconductedwith

thepromiseofanonymitytoallownon–tenure-trackacademicresearchersandnonresearcherengineerswhosupporttheresearcheffortstohaveanopportu-nitytospeakwithoutattribution.Table2illustratestheacademiccandidateresponserates.

FindingsfromIndustryInterviews

Acrossalloftheinterviewsconductedwithexperi-encedAIpractitionersfromindustry,fivedominantrootcausesemergeddescribingwhyAIprojects

fail.Overall,intervieweesexpressedthatthemostcommonrootcauseoffailurewasthebusiness

leadershipoftheorganizationmisunderstanding

howtosettheprojectonapathwaytosuccess.Ourintervieweesalsonotedthatthesetypesoffailureshadthemostimpactontheultimateoutcomeoftheprojectcomparedwiththeotherrootcausesoffail-uretheydiscussed.

Theothernotablerootcauseoffailureidentifiedbyintervieweeswaslimitationsinthequalityand

utilityofdataavailabletotraintheAImodels.Thesetworootcauseswerecitedspontaneouslybymorethanone-halfoftheintervieweesastheprimaryrea-sonsthatAIprojectsfailedorunderperformed.

Inadditiontothemostfrequentfailurepatternscited,threeotherrootcauseswerenotedbyamean-ingfulnumberofinterviewees.26First,someinter-vieweesnotedthelackofinvestmentininfrastruc-

turetoempowertheteam.Second,someintervieweesdiscussedthedifferencebetweenthetop-downfail-urescausedbyleadershipandthebottom-upfailurescausedbyindividualcontributorsonthedatascienceteam.Finally,someintervieweesdiscussedproject

TABLE1

IndustryCandidateResponseRates

Candidate

Indicators

Pool

Accepted

Declined

Numberofcandidates

379

50

14

Percentage

100

13.2

3.7

TABLE2

AcademicCandidateResponseRates

Candidate

Indicators

Pool

Accepted

Declined

Numberofcandidates

37

15

22

Percentage

100

40.5

59.5

failurescausedbyfundamentallimitationsinwhatAIcanactuallyachieve.Whilethesefailurepatternswerecitedlessfrequentlythanthetwodominantrootcauses,theyeachwerecitedbyaone-quartertoone-thirdoftheinterviewparticipants.

Leadership-DrivenFailures

Morethananyothertypeofissue,ourintervieweesnotedthatfailuresdrivenbythedecisionsandexpec-tationsoftheorganization’sbusinessleadershipwerefarandawaythemostfrequentcausesofprojectfail-ure.Eighty-fourpercentofourintervieweescitedoneormoreoftheserootcausesastheprimaryreason

thatAIprojectswouldfail.Theseleadership-drivenfailurestookseveralforms.

OptimizingfortheWrongBusinessProblem

First,alltoooften,leadershipinstructsthedatasci-enceteamtosolvethewrongproblemwithAI.This

resultsinthedatascienceteamworkinghardfor

monthstodeliveratrainedAImodelthatmakes

littleimpactonthebusinessororganization.In

manycases,thisisduetoacommunicationbreak-downbetweenthedatascienceteamandtheleadersoftheorganization.

Fewbusinessleadershaveabackgroundindatascience;consequently,theobjectivestheysetneedtobetranslatedbythetechnicalstaffintogoalsthatcan

6

beachievedbyatrainedAImodel.Infailedprojects,eitherthebusinessleadershipdoesnotmakethem-selvesavailabletodiscusswhetherthechoicesmade

bythetechnicalteamalignwiththeirintent,ortheydonotrealizethatthemetricsmeasuringthesuccessoftheAImodeldonottrulyrepresentthemetricsofsuccessforitsintendedpurpose.Forexample,busi-nessleadersmaysaythattheyneedanMLalgorithmthattellsthemthepricetosetforaproduct—but

whattheyactuallyneedisthepricethatgivesthemthegreatestprofitmargininsteadofthepricethat

sellsthemostitems.Thedatascienceteamlacksthisbusinesscontextandthereforemightmakethewrongassumptions.Thesekindsoferrorsoftenbecome

obviousonlyafterthedatascienceteamdeliversacompletedAImodelandattemptstointegrateitintoday-to-daybusinessoperations.

UsingArtificialIntelligencetoSolveSimpleProblems

Inothercases,businessleadersdemandthatthetech-nicalteamapplyMLtoaproblemthatdoesnottrulyrequireit.Noteveryproblemiscomplexenough

torequireanMLsolution:Asoneinterviewee

explained,histeamswouldsometimesbeinstructedtoapplyAItechniquestodatasetswithahandfulofdominantcharacteristicsorpatternsthatcouldhavequicklybeencapturedbyafewsimpleif-thenrules.Thismismatchcanhappenfordifferentreasons.Insomecases,leadersunderstandAIonlyasabuzz-

wordanddonotrealizethatsimplerandcheaper

solutionsareavailable.Inothercases,seniorleaderswhoarefarremovedfromtheimplementationdetailsdemandtheuseofAIbecausetheyareconfident

thattheirbusinessareamusthavecomplexproblems

Manyleadersarenot

preparedforthetime

andcostofacquiring,cleaning,andexploringtheirorganization’sdata.

thatdemandcomplexsolutions.Regardlessofthecause,whilethesetypesofprojectsmightsucceedinanarrowsense,theyfailineffectbecausetheywerenevernecessaryinthefirstplace.

OverconfidenceinArtificialIntelligence

Additionally,manyseniorleadershaveinflated

expectationsofwhatAIcanbeexpectedtoachieve.Therapidadvancementsandimpressiveachieve-

mentsofAImodelshavegeneratedawaveofhype

aboutthetechnology.PitchesfromsalespeopleandpresentationsbyAIresearchersaddtotheperceptionthatAIcaneasilyachievealmostanything.Inreality,optimizinganAImodelforanorganization’suse

casecanbemoredifficultthanthesepresentationsmakeitappear.AImodelsdevelopedbyacademicresearchersmightnotworkeffectivelyforallofthepeculiaritiesofanorganization’sbusiness.Many

businessleadersalsodonotrealizethatAIalgo-

rithmsareinherentlyprobabilistic:EveryAImodelincorporatessomedegreeofrandomnessanduncer-tainty.Businessleaderswhoexpectrepeatabilityandcertaintycanbedisappointedwhenthemodelfailstoliveuptotheirexpectations,leadingthemtolosefaithintheAIproductandinthedatascienceteam.

UnderestimatingtheTimeCommitmentNeeded

Finally,manyinterviewees(14of50)reportedfindingthatseniorleadersoftenunderestimatedtheamount

oftimethatitwouldtaketotrainanAImodelthat

waseffectiveatsolvingtheirbusinessproblems.

Evenwhenanoff-the-shelfAImodelisavailable,ithasnotbeentrainedonanorganization’sdataandthusitmaynotbeimmediatelyeffectiveinsolvingthespecificbusinessproblems.Manyleadersarenotpreparedforthetimeandcostofacquiring,clean-ing,andexploringtheirorganization’sdata.They

expectAIprojectstotakeweeksinsteadofmonths

tocomplete,andtheywonderwhythedatascienceteamcannotquicklyreplicatethefantasticachieve-mentstheyhearabouteveryday.Evenworse,in

someorganizations,seniorleadersrapidlyswitch

theirprioritieseveryfewweeksormonths.Inthesecases,projectsthatareinprogresscanbediscardedbeforetheyhavetheopportunitytodemonstratereal

7

results,orcompletedprojectscanbeignoredbecausetheynolongeraddresswhatleadershipviewsasthemostimportantprioritiesofthecompany.Evenwhentheprojectissuccessful,leadersmaydirecttheteamtomoveonprematurely.Asoneintervieweeputit,

“Often,modelsaredeliveredas50percentofwhattheycouldhavebeen.”27

Bottom-Up–DrivenFailures

Incontrasttothetop-downfailurepatternsdriven

bytheorganization’sbusinessleadership,manyinter-viewees(16of50)notedadifferenttypeoffailure

patterndrivenbythedatascientistsontheteam.

Technicalstaffoftenenjoypushingtheboundariesofthepossibleandlearningnewtoolsandtechniques.Consequently,theyoftenlookforopportunitiesto

tryoutnewlydevelopedmodelsorframeworksevenwhenolder,more-establishedtoolsmightbeabetterfitforthebusinessusecase.Individualengineersanddatascientistsalsohaveastrongincentivetobuild

uptheirexperienceusingthelatesttechnological

advancementsbecausetheseskillsarehighlydesiredinthehiringmarket.AIprojectsoftenfailwhentheyfocusonthetechnologybeingemployedinsteadoffocusingonsolvingrealproblemsfortheirintendedendusers.Whileitisimportantforanorganizationtoexperimentwithnewtechnologiesandprovideitstechnicalstaffwithopportunitiestoimprovetheir

skillsets,thisshouldbeaconsciouschoicebalancedagainsttheotherobjectivesoftheorganization.

Data-DrivenFailures

Afterleadership-drivenfailures,intervieweesidenti-fieddata-drivenfailuresasthesecondmostcommonreasonthatAIprojectsendinfailure.Thesedifficul-tiesmanifestedinanumberofways.

Manyinterviewees(30of50)discussedpersistent

issueswithdataquality.Oneintervieweenoted,80percentofAIisthedirtyworkofdataengi-neering.Youneedgoodpeopledoingthedirtywork—otherwisetheirmistakespoisonthe

algorithms.Thechallengeis,howdowecon-vincegoodpeopletodoboringwork?28

TooFewDataEngineers

Thelackofprestigeassociatedwithdataengineer-

ingactsasanadditionalbarrier:Oneinterviewee

referredtodataengineersas“theplumbersofdata

science.”29Dataengineersdothehardworkof

designingandmaintainingtheinfrastructurethat

ingests,cleans,andtransformsdataintoaformat

suitablefordatascientiststotrainmodelson.Despitethis,oftenthedatascientiststrainingtheAImodelsareseenasdoing“therealAIwork,”whiledata

engineeringislookeddownonasamenialtask.30

Thegoalformanydataengineersistogrowtheir

skillsandtransitionintotheroleofdatascientist;

consequently,someorganizationsfacehighturnoverratesinthedataengineeringgroup.Evenworse,

theseindividualstakealloftheirknowledgeabout

theorganization’sdataandinfrastructurewhentheyleave.Inorganizationsthatlackeffectivedocumen-tation,thelossofadataengineermightmeanthat

nooneknowswhichdatasetsarereliableorhowthe

meaningofadatasetmighthaveshiftedovertime.

PainstakinglyrediscoveringthatknowledgeincreasesthecostandtimerequiredtocompleteanAIproject,whichincreasesthelikelihoodthatleadershipwill

loseinterestandabandonit.

LackofSuitableData

Additionally,insomecases,organizationslacktherightkindofdatatotrainAImodels.ThisfailurepatternisparticularlycommonwhenthebusinessisapplyingAIforthefirsttimeortoanewdomain.Intervieweesnotedthatbusinessleadersoften

wouldbesurprisedtolearnthattheirorganizationlackedsufficientdatatotrainAIalgorithms.Asoneintervieweeputit,“Theythinktheyhavegreatdatabecausetheygetweeklysalesreports,buttheydon’trealizethedatatheyhavecurrentlymaynotmeetitsnewpurpose.”31Inmanycases,legacydatasetswereintendedtopreservedataforcomplianceor

loggingpurposes.Unfortunately,structuringdataforanalysiscanbequitedifferent:Itoftenrequiresconsiderablecontextaboutwhythingshappened

asopposedtosimplywhathappened.Forexample,ane-commercewebsitemighthaveloggedwhat

linksusersclickon—butnotafulllistofwhatitemsappearedonthescreenwhentheuserselectedone

8

orwhatsearchqueryledtheusertoseethatiteminthefirstplace.Thismaymeanthatdifferentfieldsneedtobepreserved,ordifferentlevelsofgranular-ityandqualitymaybenecessary.Thus,evenifanorganizationhasalargequantityofhistoricaldata,thatdatamaynotbesufficienttotrainaneffectiveAIalgorith

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論