版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆云南省通??h三中高考數(shù)學(xué)必刷試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫(xiě)的條件是()A. B. C. D.2.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)3.設(shè)為自然對(duì)數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.4.已知函數(shù),則()A. B. C. D.5.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.46.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.7.已知函數(shù),若,則a的取值范圍為()A. B. C. D.8.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.9.設(shè)為等差數(shù)列的前項(xiàng)和,若,則A. B.C. D.10.己知集合,,則()A. B. C. D.11.使得的展開(kāi)式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.12.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線:的焦點(diǎn),過(guò)作兩條互相垂直的直線,,直線與交于、兩點(diǎn),直線與交于、兩點(diǎn),則的最小值為_(kāi)_________.14.在中,內(nèi)角的對(duì)邊長(zhǎng)分別為,已知,且,則_________.15.角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(1,2),則sin(π﹣α)的值是_____.16.函數(shù)滿足,當(dāng)時(shí),,若函數(shù)在上有1515個(gè)零點(diǎn),則實(shí)數(shù)的范圍為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實(shí)數(shù)x的取值范圍.18.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,建立極坐標(biāo)系,判斷直線為參數(shù))與圓的位置關(guān)系.19.(12分)已知橢圓經(jīng)過(guò)點(diǎn),離心率為.(1)求橢圓的方程;(2)經(jīng)過(guò)點(diǎn)且斜率存在的直線交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.連接.求證:存在實(shí)數(shù),使得成立.20.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),為其前n項(xiàng)和,對(duì)于任意的滿足關(guān)系式.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的通項(xiàng)公式是,前n項(xiàng)和為,求證:對(duì)于任意的正數(shù)n,總有.21.(12分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,.(1)證明:平面平面ABCD;(2)設(shè)H在AC上,,若,求PH與平面PBC所成角的正弦值.22.(10分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計(jì)算可得輸出為25時(shí)的值,進(jìn)而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時(shí)輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項(xiàng)可知C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡(jiǎn)單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.2、C【解析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡(jiǎn)單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項(xiàng).【詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點(diǎn)睛】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡(jiǎn)單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.3、D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點(diǎn)睛】本小題主要考查函數(shù)值的計(jì)算,屬于基礎(chǔ)題.4、A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點(diǎn)睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.5、B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點(diǎn)睛】本題考查利用定義計(jì)算條件概率的問(wèn)題,涉及到雙曲線的定義,是一道容易題.7、C【解析】
求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.8、C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)?,非奇非偶函?shù),排除;B.,值域?yàn)椋婧瘮?shù),排除;C.,值域?yàn)?,奇函?shù),滿足;D.,值域?yàn)?,非奇非偶函?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對(duì)于函數(shù)知識(shí)的綜合應(yīng)用.9、C【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.10、C【解析】
先化簡(jiǎn),再求.【詳解】因?yàn)?,又因?yàn)椋?,故選:C.【點(diǎn)睛】本題主要考查一元二次不等式的解法、集合的運(yùn)算,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.11、B【解析】二項(xiàng)式展開(kāi)式的通項(xiàng)公式為,若展開(kāi)式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.12、B【解析】
根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計(jì)算即可.【詳解】解:由已知得,,,經(jīng)檢驗(yàn)滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問(wèn)題的基本思路,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、16.【解析】由題意可知拋物線的焦點(diǎn),準(zhǔn)線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點(diǎn)由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離∴,同理∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故答案為16點(diǎn)睛:(1)與拋物線有關(guān)的最值問(wèn)題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,可以使運(yùn)算化繁為簡(jiǎn).“看到準(zhǔn)線想焦點(diǎn),看到焦點(diǎn)想準(zhǔn)線”,這是解決拋物線焦點(diǎn)弦有關(guān)問(wèn)題的重要途徑;(2)圓錐曲線中的最值問(wèn)題,可利用基本不等式求解,但要注意不等式成立的條件.14、4【解析】∵∴根據(jù)正弦定理與余弦定理可得:,即∵∴∵∴故答案為415、【解析】
計(jì)算sinα,再利用誘導(dǎo)公式計(jì)算得到答案.【詳解】由題意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)定義,誘導(dǎo)公式,意在考查學(xué)生的計(jì)算能力.16、【解析】
由已知,在上有3個(gè)根,分,,,四種情況討論的單調(diào)性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個(gè)根,而含505個(gè)周期,所以在上有3個(gè)根,設(shè),,易知在上單調(diào)遞減,在,上單調(diào)遞增,又,.若時(shí),在上無(wú)根,在必有3個(gè)根,則,即,此時(shí);若時(shí),在上有1個(gè)根,注意到,此時(shí)在不可能有2個(gè)根,故不滿足;若時(shí),要使在有2個(gè)根,只需,解得;若時(shí),在上單調(diào)遞增,最多只有1個(gè)零點(diǎn),不滿足題意;綜上,實(shí)數(shù)的范圍為.故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,涉及到函數(shù)的周期性、分類討論函數(shù)的零點(diǎn),是一道中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當(dāng)且僅當(dāng)(a+b)·(a-b)≥0時(shí)取等號(hào),∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.18、直線與圓C相切.【解析】
首先把直線和圓轉(zhuǎn)換為直角坐標(biāo)方程,進(jìn)一步利用點(diǎn)到直線的距離的應(yīng)用求出直線和圓的位置關(guān)系.【詳解】直線為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為.圓轉(zhuǎn)換為直角坐標(biāo)方程為,轉(zhuǎn)換為標(biāo)準(zhǔn)形式為,所以圓心到直線,的距離.直線與圓C相切.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,直線與圓的位置關(guān)系式的應(yīng)用,點(diǎn)到直線的距離公式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.19、(1)(2)證明見(jiàn)解析【解析】
(1)由點(diǎn)可得,由,根據(jù)即可求解;(2)設(shè)直線的方程為,聯(lián)立可得,設(shè),由韋達(dá)定理可得,再根據(jù)直線的斜率公式求得;由點(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱,可設(shè),可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設(shè)直線的方程為,聯(lián)立,可得,設(shè),則有,因?yàn)?所以,又因?yàn)辄c(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱,所以,即,則有,由點(diǎn)在橢圓上,得,所以,所以,即,所以存在實(shí)數(shù),使成立【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線的斜率公式的應(yīng)用,考查運(yùn)算能力.20、(1)(2)證明見(jiàn)解析【解析】
(1)根據(jù)公式得到,計(jì)算得到答案.(2),根據(jù)裂項(xiàng)求和法計(jì)算得到,得到證明.【詳解】(1)由已知得時(shí),,故.故數(shù)列為等比數(shù)列,且公比.又當(dāng)時(shí),,..(2)..【點(diǎn)睛】本題考查了數(shù)列通項(xiàng)公式和證明數(shù)列不等式,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.21、(1)見(jiàn)解析;(2)【解析】
(1)記,連結(jié),推導(dǎo)出,平面,由此能證明平面平面;(2)推導(dǎo)出,平面,連結(jié),由題意得為的重心,,從而平面平面,進(jìn)而是與平面所成角,由此能求出與平面所成角的正弦值.【詳解】(1)證明:記,連結(jié),中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,連結(jié),由題意得為的重心,,,,平面平面平面,∴在平面的射影落在上,是與平面所成角,中,,,,.與平面所成角的正弦值為.【點(diǎn)睛】本題考查面面垂直的證明,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 自然類研學(xué)旅行課程設(shè)計(jì)
- 自制香薰蠟燭課程設(shè)計(jì)
- 2024年電影項(xiàng)目策劃與制作全權(quán)委托協(xié)議3篇
- 二零二五年出租車司機(jī)駕駛疲勞檢測(cè)與雇傭合同3篇
- 池州學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 承德應(yīng)用技術(shù)職業(yè)學(xué)院《歌曲寫(xiě)作1》2023-2024學(xué)年第一學(xué)期期末試卷
- 成都銀杏酒店管理學(xué)院《城市河湖水生態(tài)與水環(huán)境》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度個(gè)人住宅裝修貸款延期還款合同3篇
- 2024年走讀生交通安全保障合同版B版
- 2025版中央空調(diào)安裝與智能化控制系統(tǒng)合同范本3篇
- 國(guó)家開(kāi)放大學(xué)電大臨床藥理學(xué)形考任務(wù)1-3參考答案
- 2024年人教版七年級(jí)下冊(cè)英語(yǔ)期末綜合檢測(cè)試卷及答案
- 2025年高中政治學(xué)業(yè)水平考試時(shí)政考點(diǎn)歸納總結(jié)(復(fù)習(xí)必背)
- 統(tǒng)編版(2024新版)七年級(jí)下冊(cè)道德與法治期末復(fù)習(xí)背誦知識(shí)點(diǎn)提綱
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)宣傳畫(huà)冊(cè)
- 老舊小區(qū)改造工程安全管理體系管理制度及措施
- 2024年山西省晉中市公開(kāi)招聘警務(wù)輔助人員(輔警)筆試摸底測(cè)試(3)卷含答案
- 2024夏令營(yíng)項(xiàng)目家長(zhǎng)溝通與反饋服務(wù)協(xié)議3篇
- 文史哲與藝術(shù)中的數(shù)學(xué)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋吉林師范大學(xué)
- 13485質(zhì)量管理培訓(xùn)
- 9《復(fù)活(節(jié)選)》練習(xí) (含答案)統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)
評(píng)論
0/150
提交評(píng)論