新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(解析版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

答案第=page11頁,共=sectionpages22頁專題05各類基本初等函數(shù)【練基礎(chǔ)】一、單選題1.(2023·全國·高三專題練習(xí))已知圖象開口向上的二次函數(shù)SKIPIF1<0,對任意SKIPIF1<0,都滿足SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意,可知函數(shù)的對稱性,并明確其對稱軸,根據(jù)二次函數(shù)的圖象性質(zhì),可得答案.【詳解】由SKIPIF1<0,得函數(shù)SKIPIF1<0圖象的對稱軸是直線SKIPIF1<0,又二次函數(shù)SKIPIF1<0圖象開口向上,若SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,解得SKIPIF1<0.故選:B.2.(2021·新疆·新源縣第二中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由于函數(shù)為增函數(shù),所以函數(shù)在每一段上都為增函數(shù),且還要滿足SKIPIF1<0,從而可求出實數(shù)SKIPIF1<0的取值范圍.【詳解】解:因為函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),所以SKIPIF1<0,解得SKIPIF1<0.所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B3.(2022·重慶市萬州第二高級中學(xué)高二階段練習(xí))已知冪函數(shù)SKIPIF1<0與SKIPIF1<0的部分圖象如圖所示,直線SKIPIF1<0,SKIPIF1<0與SKIPIF1<0,SKIPIF1<0的圖象分別交于A?B?C?D四點,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】B【分析】把SKIPIF1<0用函數(shù)值表示后變形可得.【詳解】由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故選:B.4.(2022·寧夏·銀川市第六中學(xué)高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】利用SKIPIF1<0等中間值區(qū)分各個數(shù)值的大小.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.故選A.【點睛】本題考查大小比較問題,關(guān)鍵選擇中間量和函數(shù)的單調(diào)性進(jìn)行比較.5.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)已知條件判定f(x)為偶函數(shù),結(jié)合其單調(diào)性和特殊值,得到f(x)<13的解集,利用平移變換思想得到f(x-2)<13的解集.【詳解】依題意知SKIPIF1<0為偶函數(shù),其圖象關(guān)于SKIPIF1<0軸對稱,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0的解集為SKIPIF1<0.將SKIPIF1<0的圖象沿SKIPIF1<0軸向右平移SKIPIF1<0個單位長度后可得SKIPIF1<0的圖象,所以不等式SKIPIF1<0的解集為SKIPIF1<0.故選:B.【點睛】本題考查應(yīng)用函數(shù)的奇偶性與單調(diào)性解函數(shù)不等式問題,涉及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題,為了求解關(guān)于f(x-a)的不等式常??梢韵惹笙鄳?yīng)的關(guān)于f(x)的不等式,然后利用平移變換的方法得到所求不等式的解集.6.(2021·黑龍江·佳木斯市第二中學(xué)高三階段練習(xí)(理))在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0的形狀為(

)A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形【答案】B【分析】利用給定條件結(jié)合對數(shù)運(yùn)算可得SKIPIF1<0,再利用正弦定理角化邊即可判斷得解.【詳解】因SKIPIF1<0,則有SKIPIF1<0,即有SKIPIF1<0,于是得SKIPIF1<0,在SKIPIF1<0中,由正弦定理SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0是直角三角形.故選:B7.(2023·全國·高三專題練習(xí))在同一直角坐標(biāo)系中,函數(shù)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0的圖象可能是(

)A. B.C. D.【答案】C【分析】由函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱,根據(jù)對數(shù)函數(shù)的圖象與性質(zhì)及反比例函數(shù)的單調(diào)性即可求解.【詳解】解:因為函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱,所以函數(shù)SKIPIF1<0的圖象恒過定點SKIPIF1<0,故選項A、B錯誤;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,故選項D錯誤,選項C正確.故選:C.8.(2022·北京·高三專題練習(xí))若不等式SKIPIF1<0在SKIPIF1<0內(nèi)恒成立,則a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)對數(shù)函數(shù)的圖象與性質(zhì),分SKIPIF1<0和SKIPIF1<0兩種情況分類討論,結(jié)合函數(shù)的單調(diào)性,列出不等式,即可求解.【詳解】當(dāng)SKIPIF1<0時,由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,又由SKIPIF1<0,此時不等式SKIPIF1<0不成立,不合題意;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,此時函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又由SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,要使得不等式SKIPIF1<0在SKIPIF1<0內(nèi)恒成立,可得SKIPIF1<0,解得SKIPIF1<0.故選:A.二、多選題9.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象如下圖所示,則下列四個函數(shù)圖象與函數(shù)解析式對應(yīng)正確的是(

)A. B.C. D.【答案】ABD【分析】由函數(shù)圖象過點SKIPIF1<0可得SKIPIF1<0的值,根據(jù)指數(shù)、對數(shù)、冪函數(shù)圖象的特點逐一判斷即可.【詳解】由圖可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0單調(diào)遞減過點SKIPIF1<0,故A正確;SKIPIF1<0為偶函數(shù),在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故B正確;SKIPIF1<0為偶函數(shù),結(jié)合指數(shù)函數(shù)圖象可知C錯誤;SKIPIF1<0,根據(jù)““上不動、下翻上”可知D正確;故選:ABD.10.(2021·重慶市清華中學(xué)校高三階段練習(xí))已知SKIPIF1<0SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】由對數(shù)函數(shù)的單調(diào)性結(jié)合換底公式比較SKIPIF1<0的大小,計算出SKIPIF1<0,利用基本不等式得SKIPIF1<0,而SKIPIF1<0,從而可比較大?。驹斀狻坑深}意可知,對于選項AB,因為SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以選項A錯誤,選項B正確;對于選項CD,SKIPIF1<0,且SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故選項C正確,選項D錯誤;故選:BC.【點睛】關(guān)鍵點點睛:本題考查對數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較對數(shù)的大小,對于不同底的對數(shù),可利用換底公式化為同底,再由用函數(shù)的單調(diào)性及不等式的性質(zhì)比較大小,也可結(jié)合中間值如0或1或2等比較后得出結(jié)論.11.(2022·河北·安新縣第二中學(xué)高三階段練習(xí))下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AB【分析】根據(jù)函數(shù)SKIPIF1<0和SKIPIF1<0的單調(diào)性,即可判斷A是否正確;作出函數(shù)函數(shù)SKIPIF1<0的函數(shù)圖象,根據(jù)圖像即可判斷B是否正確;作出函數(shù)SKIPIF1<0的函數(shù)圖象,根據(jù)圖像即可判斷C是否正確;利用誘導(dǎo)公式,即可判斷D是否正確.【詳解】因為函數(shù)SKIPIF1<0是單調(diào)遞減函數(shù),所以SKIPIF1<0;函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,故A正確;作出函數(shù)SKIPIF1<0的函數(shù)圖象,如下圖所示:由圖象可知,SKIPIF1<0;故B正確;作出函數(shù)SKIPIF1<0的函數(shù)圖象,如下圖所示:當(dāng)SKIPIF1<0時,可知SKIPIF1<0;故C錯誤;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故D錯誤.故選:AB.12.(2020·全國·高三階段練習(xí))設(shè)函數(shù)SKIPIF1<0,則(

).A.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增 B.SKIPIF1<0的最小值是2C.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱 D.SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱【答案】BC【解析】先根據(jù)SKIPIF1<0可判斷C正確,AD錯誤,再根據(jù)基本不等式即可判斷B正確.【詳解】解:對A,D,C,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,故C正確,SKIPIF1<0函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,故AD錯誤;對B,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)“SKIPIF1<0”,即“SKIPIF1<0”時取等號,故B正確.故選:BC.三、填空題13.(2021·廣東·橫崗高中高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值是3,則SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】先通過取x的特殊值0,1,-1得到a≤0,然后,利用分類討論思想,分SKIPIF1<0和SKIPIF1<0兩個范圍分別證明a≤0時符合題意.【詳解】由題易知SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.下證SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上最大值為3.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,滿足;若SKIPIF1<0,即SKIPIF1<0,此時SKIPIF1<0,而SKIPIF1<0,滿足;因此,SKIPIF1<0符合題意.【點睛】本題考查帶有絕對值的含參數(shù)的二次函數(shù)函數(shù)的最值問題,利用特值求得a≤0,然后分類討論證明a≤0時符合題意,是十分巧妙的方法,要注意體會和掌握.14.(2021·寧夏·青銅峽市寧朔中學(xué)高三階段練習(xí)(理))函數(shù)y=loga(2x-3)+8的圖象恒過定點A,且點A在冪函數(shù)f(x)的圖象上,則f(3)=________.【答案】27【分析】由對數(shù)函數(shù)的圖象所過定點求得SKIPIF1<0點坐標(biāo),設(shè)出冪函數(shù)解析式,代入點的坐標(biāo)求得冪函數(shù)解析式,然后可得函數(shù)值.【詳解】由題意SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,定點A為(2,8),設(shè)f(x)=xα,則2α=8,α=3,∴f(x)=x3,∴f(3)=33=27.故答案為:2715.(2022·河南·洛陽市第一高級中學(xué)高三階段練習(xí)(理))已知SKIPIF1<0為R上的奇函數(shù),且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的值為______.【答案】SKIPIF1<0##-0.8【分析】由題設(shè)條件可得SKIPIF1<0的周期為2,應(yīng)用周期性、奇函數(shù)的性質(zhì)有SKIPIF1<0,根據(jù)已知解析式求值即可.【詳解】由題設(shè),SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0的周期為2,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.16.(2019·寧夏·銀川一中高三階段練習(xí)(文))函數(shù)SKIPIF1<0且SKIPIF1<0的圖象恒過定點SKIPIF1<0,若點SKIPIF1<0在直線SKIPIF1<0上,其中SKIPIF1<0,則SKIPIF1<0的最小值為_______.【答案】SKIPIF1<0【詳解】試題分析:由題意可知,令x+3=1,則y=-1,即x=-2,y=-1,所以A(-2,-1),可得2m+n=1,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0考點:本題考查基本不等式求最值點評:解決本題的關(guān)鍵是求出A點坐標(biāo),注意利用基本不等式的條件四、解答題17.(2022·寧夏·平羅中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0在SKIPIF1<0上的值域;(2)解不等式SKIPIF1<0;【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【分析】(1)令SKIPIF1<0,將問題轉(zhuǎn)化為二次函數(shù)值域的求解問題,由二次函數(shù)性質(zhì)可求得結(jié)果;(2)將不等式整理為SKIPIF1<0,可得SKIPIF1<0,由指數(shù)函數(shù)單調(diào)性可解不等式求得結(jié)果.【詳解】(1)令SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則可將原函數(shù)轉(zhuǎn)化為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;∴SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0;(2)∵SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,即不等式SKIPIF1<0的解集為SKIPIF1<018.(2022·天津市建華中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求a的取值范圍;(2)解關(guān)于x的不等式SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)答案見解析.【解析】(1)首先求出函數(shù)SKIPIF1<0的對稱軸,再根據(jù)題意得到SKIPIF1<0,即可得到答案.(2)首先將SKIPIF1<0得到SKIPIF1<0,再分類討論解不等式即可.【詳解】(1)SKIPIF1<0的對稱軸為SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0.(2)因為SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時,解集為SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時,解集為SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時,解集為SKIPIF1<0.19.(2022·陜西·渭南市瑞泉中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0.(1)求實數(shù)SKIPIF1<0的取值范圍;(2)解關(guān)于SKIPIF1<0的不等式SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)本題可根據(jù)對數(shù)函數(shù)的性質(zhì)得出SKIPIF1<0恒成立,然后通過SKIPIF1<0即可得出結(jié)果;(2)本題首先可根據(jù)SKIPIF1<0得出SKIPIF1<0,然后通過計算即可得出結(jié)果.【詳解】(1)因為函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,所以SKIPIF1<0恒成立,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的取值范圍為SKIPIF1<0.(2)SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故不等式SKIPIF1<0的解集為SKIPIF1<0.20.(2020·江蘇·揚(yáng)州市邗江區(qū)第一中學(xué)高三階段練習(xí))設(shè)函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0的圖象關(guān)于原點對稱,求函數(shù)SKIPIF1<0的零點SKIPIF1<0;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0,求實數(shù)SKIPIF1<0的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【分析】(1)通過SKIPIF1<0,求出SKIPIF1<0.得到函數(shù)的解析式,解方程,求解函數(shù)的零點即可.(2)利用換元法令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì)求解函數(shù)的最值,推出結(jié)果即可.【詳解】(1)解:SKIPIF1<0的圖象關(guān)于原點對稱,SKIPIF1<0為奇函數(shù),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的零點為SKIPIF1<0.(2)解:因為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,對稱軸SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0;②當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0(舍SKIPIF1<0;綜上:實數(shù)SKIPIF1<0的值為SKIPIF1<0.21.(2022·安徽省懷寧縣第二中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0在SKIPIF1<0的值域(2)若關(guān)于x的方程SKIPIF1<0有解,求a的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【分析】(1)依題意可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,最后根據(jù)二次函數(shù)的性質(zhì)計算可得;(2)依題意可得SKIPIF1<0有解,參變分離可得SKIPIF1<0有解,再根據(jù)指數(shù)函數(shù)的性質(zhì)計算可得;【詳解】(1)解:∵SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,而對稱軸SKIPIF1<0,開口向上,∴當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,∴SKIPIF1<0的值域是SKIPIF1<0.(2)解:方程SKIPIF1<0有解,即SKIPIF1<0有解,即SKIPIF1<0有解,∴SKIPIF1<0有解,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0.22.(2021·陜西·西安市長安區(qū)第七中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù))是奇函數(shù).(1)求SKIPIF1<0的值與函數(shù)SKIPIF1<0的定義域.(2)若當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立.求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,定義域為SKIPIF1<0或SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)函數(shù)是奇函數(shù),得到SKIPIF1<0,求出SKIPIF1<0,再解不等式SKIPIF1<0,即可求出定義域;(2)先由題意,根據(jù)對數(shù)函數(shù)的性質(zhì),求出SKIPIF1<0的最小值,即可得出結(jié)果.【詳解】(1)因為函數(shù)SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以函數(shù)的定義域為SKIPIF1<0或SKIPIF1<0;(2)SKIPIF1<0,當(dāng)SKIPIF1<0時,所以SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.【點睛】本題主要考查由函數(shù)奇偶性求參數(shù),考查求具體函數(shù)的定義域,考查含對數(shù)不等式,屬于??碱}型.【提能力】一、單選題1.(2022·山西·平遙縣第二中學(xué)校高三階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】分析:由題意結(jié)合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,綜上可得:SKIPIF1<0.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運(yùn)用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進(jìn)行比較.這就必須掌握一些特殊方法.在進(jìn)行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確.2.(2020·四川·仁壽一中高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】畫出圖像,設(shè)SKIPIF1<0,根據(jù)圖像確定SKIPIF1<0,再把SKIPIF1<0寫成關(guān)于t的函數(shù),求函數(shù)的值域.【詳解】設(shè)SKIPIF1<0,根據(jù)圖像SKIPIF1<0有兩個交點,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;所以SKIPIF1<0.故選:B.【點睛】關(guān)鍵點睛:本題考查利用函數(shù)零點求范圍,解題的關(guān)鍵是利用已知條件將SKIPIF1<0寫成關(guān)于t的函數(shù),再結(jié)合圖像求出t的取值范圍,即轉(zhuǎn)化為求函數(shù)的值域問題,考查學(xué)生的轉(zhuǎn)化能力與數(shù)形結(jié)合思想,屬于基礎(chǔ)題.3.(2022·湖南省臨澧縣第一中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0若SKIPIF1<0的最小值為SKIPIF1<0,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分別求解分段函數(shù)在每一段定義區(qū)間內(nèi)的最小值,結(jié)合函數(shù)在整體定義域內(nèi)的最小值得到關(guān)于a的不等式組,解不等式組得到a的取值范圍.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,即當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的最小值為SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,要使得函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,則滿足SKIPIF1<0解得SKIPIF1<0.故選:A.4.(2022·陜西·西北工業(yè)大學(xué)附屬中學(xué)高三階段練習(xí)(文))已知實數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有三個不同的實數(shù),則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】作出SKIPIF1<0圖象,令SKIPIF1<0,數(shù)形結(jié)合,可得SKIPIF1<0時SKIPIF1<0有1個根,SKIPIF1<0時SKIPIF1<0有2個根,將所求轉(zhuǎn)化為SKIPIF1<0,結(jié)合題意,可得兩根的范圍,解不等式,即可得答案.【詳解】作出SKIPIF1<0圖象,如圖所示,令SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0圖象有1個交點,即SKIPIF1<0有1個根,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0圖象有2個交點,即SKIPIF1<0有2個根,則關(guān)于SKIPIF1<0的方程SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,由題意得SKIPIF1<0,解得SKIPIF1<0,方程SKIPIF1<0的兩根為SKIPIF1<0,因為關(guān)于SKIPIF1<0的方程SKIPIF1<0有三個不同的實數(shù),則SKIPIF1<0,解得SKIPIF1<0,滿足題意.故選:A5.(2021·北京市第一六一中學(xué)高三階段練習(xí))若直線SKIPIF1<0與函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象有兩個公共點,則SKIPIF1<0的取值可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.4【答案】A【分析】對SKIPIF1<0分類討論,利用數(shù)形結(jié)合分析得解.【詳解】(1)當(dāng)SKIPIF1<0時,畫出兩個函數(shù)在同一坐標(biāo)系下的圖像若有兩個交點,則SKIPIF1<0,因為SKIPIF1<0,所以此種情況不存在;(2)當(dāng)SKIPIF1<0時,畫出兩個函數(shù)在同一坐標(biāo)系下的圖像若有兩個交點,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0.綜上,SKIPIF1<0的取值范圍是SKIPIF1<0故選:A6.(2022·福建·莆田一中高一階段練習(xí))若對SKIPIF1<0,函數(shù)SKIPIF1<0始終滿足SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】B【分析】確定SKIPIF1<0,SKIPIF1<0,排除AD;SKIPIF1<0,排除C,得到答案.【詳解】當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0始終滿足SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.SKIPIF1<0,排除AD;SKIPIF1<0,排除C.故選:B7.(2022·廣東·佛山市三水區(qū)實驗中學(xué)高一階段練習(xí))已知函數(shù)SKIPIF1<0的圖象經(jīng)過定點SKIPIF1<0,那么使得不等式SKIPIF1<0在區(qū)間SKIPIF1<0上有解的SKIPIF1<0取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)SKIPIF1<0可求得SKIPIF1<0,進(jìn)而得到SKIPIF1<0,根據(jù)對數(shù)真數(shù)大于零可確定SKIPIF1<0;將不等式化為SKIPIF1<0,根據(jù)對數(shù)函數(shù)單調(diào)性,結(jié)合分離變量法可得SKIPIF1<0,根據(jù)不等式有解可知SKIPIF1<0,令SKIPIF1<0,將問題轉(zhuǎn)化為求解SKIPIF1<0在SKIPIF1<0上的最大值的問題,利用二次函數(shù)性質(zhì)可求得最大值,結(jié)合SKIPIF1<0可得結(jié)果.【詳解】SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,若SKIPIF1<0,則SKIPIF1<0;由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;令SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.8.(2021·吉林長春·高三階段練習(xí)(理))已知函數(shù)f(x)=lg(x2-2x-3)在(-∞,a)單調(diào)遞減,則a的取值范圍是(

)A.(-∞,-1] B.(-∞,2] C.[5,+∞) D.[3,+∞)【答案】A【分析】結(jié)合對數(shù)函數(shù)和二次函數(shù)的單調(diào)性求解.【詳解】SKIPIF1<0是增函數(shù),SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0遞增,因此SKIPIF1<0在SKIPIF1<0上遞減,則有SKIPIF1<0,解得SKIPIF1<0.故選:A.二、多選題9.(2022·廣東中山·高三期末)已知函數(shù)SKIPIF1<0,則下列說法正確的是(

)A.函數(shù)SKIPIF1<0是偶函數(shù) B.函數(shù)SKIPIF1<0是奇函數(shù)C.函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù) D.函數(shù)SKIPIF1<0的值域為SKIPIF1<0【答案】AD【分析】利用函數(shù)單調(diào)性的定義及判定方法,可判定A正確,B錯誤;利用復(fù)合函數(shù)的單調(diào)性可判定C不正確,D正確.【詳解】由題意,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0關(guān)于原點對稱,又由SKIPIF1<0,所以函數(shù)SKIPIF1<0是偶函數(shù),所以A正確,B錯誤;由函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取得最小值,最小值為SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0,所以C不正確,D正確.故選:AD.10.(2022·遼寧·大連佰圣高級中學(xué)有限公司高三期中)下列不等關(guān)系中一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】ABC【分析】A.利用對數(shù)函數(shù)的單調(diào)性判斷;B.利用指數(shù)函數(shù)和冪函數(shù)的單調(diào)性判斷;C.利用作差法判斷;D.取特殊值判斷.【詳解】A.因為SKIPIF1<0,所以SKIPIF1<0,故正確B.因為SKIPIF1<0在SKIPIF1<0上遞增,則SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上遞減,則SKIPIF1<0,所以SKIPIF1<0,故正確;C.因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故正確;D.當(dāng)SKIPIF1<0時,SKIPIF1<0,故錯誤;故選:ABC11.(2022·全國·高三專題練習(xí))已知實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則下列不等式恒成立的是(

)A.SKIPIF1<0B.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0C.SKIPIF1<0D.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0【答案】BCD【分析】由SKIPIF1<0,根據(jù)SKIPIF1<0為SKIPIF1<0上的增函數(shù),所以SKIPIF1<0,再逐項分析判斷即可得解.【詳解】因為SKIPIF1<0為SKIPIF1<0上的增函數(shù),所以SKIPIF1<0.因為函數(shù)SKIPIF1<0在SKIPIF1<0上有增有減,所以A中的不等式不恒成立,A錯誤;因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,故B正確;因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,故C正確;因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,故D正確.故選:BCD.12.(2022·江蘇·南京市第五高級中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0,則(

)A.函數(shù)SKIPIF1<0為偶函數(shù)B.函數(shù)SKIPIF1<0為奇函數(shù)C.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值與最小值之和為0D.設(shè)SKIPIF1<0,則SKIPIF1<0的解集為SKIPIF1<0【答案】BCD【分析】根據(jù)題意,利用奇偶性,單調(diào)性,依次分析選項是否正確,即可得到答案【詳解】對于A:SKIPIF1<0,定義域為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0為奇函數(shù),故A錯誤;對于B:SKIPIF1<0,定義域為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0為奇函數(shù),故B正確;對于C:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0都為奇函數(shù),則SKIPIF1<0為奇函數(shù),SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值與最小值互為相反數(shù),必有SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值與最小值之和為0,故C正確;對于D:SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上為減函數(shù),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上為減函數(shù),則SKIPIF1<0在SKIPIF1<0上為減函數(shù),若SKIPIF1<0即SKIPIF1<0,則必有SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的解集為SKIPIF1<0,故D正確;故選:BCD三、填空題13.(2023·上?!じ呷龑n}練習(xí))關(guān)于的函數(shù)SKIPIF1<0的最大值記為SKIPIF1<0,則SKIPIF1<0的解析式為__________.【答案】SKIPIF1<0【分析】將函數(shù)看成關(guān)于SKIPIF1<0的二次函數(shù),配方得到對稱軸為SKIPIF1<0,再由SKIPIF1<0,SKIPIF1<0,判斷對稱軸與區(qū)間的位置關(guān)系,離對稱軸最遠(yuǎn)的點對應(yīng)的函數(shù)值為最大值.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值為SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值為SKIPIF1<0時SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意整體思想的應(yīng)用及離對稱軸最遠(yuǎn)的點對應(yīng)的函數(shù)值為最大值.14.(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0圖象過定點SKIPIF1<0,點SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0最小值為___________.【答案】SKIPIF1<0##4.5【分析】根據(jù)指數(shù)函數(shù)過定點的求法可求得SKIPIF1<0,代入直線方程可得SKIPIF1<0,根據(jù)SKIPIF1<0,利用基本不等式可求得最小值.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0過定點SKIPIF1<0,又點SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號),SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.15.(2021·四川·內(nèi)江市教育科學(xué)研究所一模(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0存在2個零點,則實數(shù)m的取值范圍是______.【答案】SKIPIF1<0【分析】由SKIPIF1<0存在2個零點,可知函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有兩個不同的交點,畫出函數(shù)圖象,根據(jù)圖象求解即可【詳解】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0存在2個零點,可得函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有兩個不同的交點,SKIPIF1<0的圖象如圖所示,由SKIPIF1<0,得SKIPIF1<0所以直線SKIPIF1<0恒過點SKIPIF1<0,由圖可知,當(dāng)SKIPIF1<0時,直線與SKIPIF1<0的圖象恒有兩個不同的交點,當(dāng)SKIPIF1<0時,設(shè)直線SKIPIF1<0與函數(shù)SKIPIF1<0相切于點SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時,直線與SKIPIF1<0的圖象恒有兩個不同的交點,綜上,當(dāng)SKIPIF1<0,或SKIPIF1<0時,直線與SKIPIF1<0的圖象恒有兩個不同的交點,所以實數(shù)m的取值范圍為SKIPIF1<0,故答案為:SKIPIF1<016.(2022·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0_____.【答案】SKIPIF1<0【分析】根據(jù)指數(shù)的運(yùn)算律計算出SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論