北京郵電大學(xué)《中間件技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
北京郵電大學(xué)《中間件技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
北京郵電大學(xué)《中間件技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
北京郵電大學(xué)《中間件技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
北京郵電大學(xué)《中間件技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁北京郵電大學(xué)《中間件技術(shù)》

2022-2023學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在自然語言處理中,詞向量是一種重要的表示方法。假設(shè)要對一段文本進(jìn)行語義分析,使用詞向量模型。以下關(guān)于詞向量的描述,正確的是:()A.詞向量的維度越高,對詞語的表示就越精確,不會出現(xiàn)語義混淆B.不同的詞向量模型,如Word2Vec和GloVe,生成的詞向量不能相互轉(zhuǎn)換和比較C.詞向量可以捕捉詞語之間的語義關(guān)系,例如相似性和相關(guān)性D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進(jìn)行更新和優(yōu)化2、人工智能中的模型壓縮技術(shù)可以減少模型的參數(shù)數(shù)量和計算量。假設(shè)要在移動設(shè)備上部署一個深度學(xué)習(xí)模型,以下哪種模型壓縮方法可能最有效?()A.剪枝B.量化C.知識蒸餾D.以上都有可能3、在人工智能的推薦系統(tǒng)中,為用戶提供個性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項是不準(zhǔn)確的?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.隨機(jī)推薦D.混合推薦4、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時實現(xiàn)模型訓(xùn)練。假設(shè)多個機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個人工智能模型,同時保護(hù)各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)可以在不共享原始數(shù)據(jù)的情況下,直接合并各機(jī)構(gòu)的模型參數(shù)進(jìn)行訓(xùn)練B.聯(lián)邦學(xué)習(xí)過程中不存在通信開銷和安全風(fēng)險C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學(xué)習(xí)能夠在保護(hù)數(shù)據(jù)隱私的前提下協(xié)同訓(xùn)練模型D.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對于大規(guī)模和復(fù)雜的任務(wù)不適用5、在人工智能的醫(yī)療應(yīng)用中,疾病診斷是一個重要的方向。假設(shè)我們要利用人工智能技術(shù)輔助醫(yī)生診斷心臟病,需要對大量的醫(yī)療數(shù)據(jù)進(jìn)行分析。那么,以下關(guān)于人工智能在醫(yī)療診斷中的作用,哪一項是不準(zhǔn)確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺的細(xì)微模式和關(guān)聯(lián)B.可以完全取代醫(yī)生的診斷,獨(dú)立做出準(zhǔn)確的判斷C.有助于提高診斷的效率和準(zhǔn)確性D.需要結(jié)合醫(yī)生的臨床經(jīng)驗和專業(yè)知識進(jìn)行綜合判斷6、在人工智能的情感分析任務(wù)中,需要判斷文本所表達(dá)的情感傾向,如積極、消極或中性。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下哪種方法在處理大量非結(jié)構(gòu)化文本數(shù)據(jù)時效果較好?()A.基于詞典的方法B.基于機(jī)器學(xué)習(xí)的分類方法C.基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)方法D.人工閱讀和判斷7、人工智能在醫(yī)療領(lǐng)域的應(yīng)用不斷拓展。假設(shè)利用人工智能輔助醫(yī)生進(jìn)行疾病診斷,以下關(guān)于其應(yīng)用的描述,哪一項是不準(zhǔn)確的?()A.人工智能可以分析醫(yī)學(xué)影像,幫助醫(yī)生發(fā)現(xiàn)潛在的病變B.基于大數(shù)據(jù)的人工智能模型能夠提供更準(zhǔn)確的診斷建議,但不能取代醫(yī)生的最終判斷C.人工智能在醫(yī)療中的應(yīng)用可以完全避免誤診和漏診的情況發(fā)生D.醫(yī)生和人工智能系統(tǒng)的合作可以提高醫(yī)療效率和質(zhì)量8、在人工智能的知識圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),以建立實體之間的關(guān)系。假設(shè)要構(gòu)建一個關(guān)于歷史人物和事件的知識圖譜,以下哪種數(shù)據(jù)源對于豐富和準(zhǔn)確的圖譜構(gòu)建是最有價值的?()A.百科全書和歷史書籍B.社交媒體上的相關(guān)討論C.個人博客和論壇帖子D.未經(jīng)證實的網(wǎng)絡(luò)傳聞9、當(dāng)利用人工智能進(jìn)行推薦系統(tǒng)的設(shè)計,例如為用戶推薦個性化的電影或音樂,以下哪種技術(shù)可能有助于提高推薦的準(zhǔn)確性和新穎性?()A.協(xié)同過濾B.基于內(nèi)容的推薦C.混合推薦D.以上都是10、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標(biāo)注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強(qiáng)技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對數(shù)據(jù)的需求C.直接使用未標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機(jī)器學(xué)習(xí)算法11、在人工智能的目標(biāo)檢測任務(wù)中,假設(shè)圖像中存在多個不同大小和形狀的目標(biāo),且目標(biāo)之間存在遮擋。以下哪種檢測算法能夠較好地應(yīng)對這種復(fù)雜情況?()A.FasterR-CNN,基于區(qū)域建議網(wǎng)絡(luò)B.YOLO(YouOnlyLookOnce),一次性檢測所有目標(biāo)C.SSD(SingleShotMultiBoxDetector),多尺度檢測D.以上都是12、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本、音頻等。假設(shè)要開發(fā)一個能夠同時理解視頻中的圖像內(nèi)容和音頻解說的系統(tǒng),以下哪種多模態(tài)學(xué)習(xí)方法在整合和理解這些異構(gòu)數(shù)據(jù)方面表現(xiàn)更為出色?()A.早期融合B.晚期融合C.注意力機(jī)制D.混合融合13、在人工智能的發(fā)展中,算力的需求不斷增長。假設(shè)要訓(xùn)練一個大型的人工智能模型,以下關(guān)于算力的描述,正確的是:()A.普通的個人電腦就能夠滿足訓(xùn)練大型人工智能模型的算力需求B.算力的提升主要依賴硬件的改進(jìn),軟件優(yōu)化的作用不大C.云計算平臺可以提供強(qiáng)大的算力支持,幫助研究人員和企業(yè)訓(xùn)練復(fù)雜的人工智能模型D.算力的增長對人工智能模型的性能提升沒有實質(zhì)性的幫助14、在人工智能的自然語言生成任務(wù)中,預(yù)訓(xùn)練語言模型如GPT-3取得了顯著進(jìn)展。假設(shè)要使用預(yù)訓(xùn)練語言模型生成一篇新聞報道,以下哪個步驟是最重要的?()A.選擇合適的預(yù)訓(xùn)練模型B.對模型進(jìn)行微調(diào)C.設(shè)計輸入的提示信息D.評估生成的文本質(zhì)量15、在人工智能的藝術(shù)創(chuàng)作中,以下哪種方式可能會引發(fā)關(guān)于作品原創(chuàng)性和版權(quán)的爭議?()A.基于已有作品的風(fēng)格進(jìn)行模仿創(chuàng)作B.使用人工智能生成全新的藝術(shù)作品C.人類藝術(shù)家與人工智能共同創(chuàng)作D.以上都有可能16、在人工智能的模型訓(xùn)練中,數(shù)據(jù)預(yù)處理是重要的環(huán)節(jié)。假設(shè)要訓(xùn)練一個用于圖像識別的模型,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項是不正確的?()A.數(shù)據(jù)清洗可以去除噪聲和異常值,提高數(shù)據(jù)質(zhì)量B.數(shù)據(jù)增強(qiáng)可以通過旋轉(zhuǎn)、縮放等操作增加數(shù)據(jù)的多樣性C.數(shù)據(jù)歸一化可以將數(shù)據(jù)的值范圍統(tǒng)一,有助于模型的訓(xùn)練和收斂D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略這一環(huán)節(jié),直接進(jìn)行模型訓(xùn)練17、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時實現(xiàn)模型的協(xié)同訓(xùn)練。假設(shè)多個機(jī)構(gòu)擁有各自的私有數(shù)據(jù),需要共同訓(xùn)練一個模型。以下哪種聯(lián)邦學(xué)習(xí)算法或框架在處理數(shù)據(jù)異構(gòu)和通信效率方面表現(xiàn)更為優(yōu)秀?()A.橫向聯(lián)邦學(xué)習(xí)B.縱向聯(lián)邦學(xué)習(xí)C.聯(lián)邦遷移學(xué)習(xí)D.以上框架根據(jù)具體情況選擇18、人工智能中的智能監(jiān)控系統(tǒng)在安防、交通等領(lǐng)域發(fā)揮著重要作用。假設(shè)我們要在一個大型商場部署智能監(jiān)控系統(tǒng),以下關(guān)于智能監(jiān)控的功能,哪一項是不準(zhǔn)確的?()A.實時檢測異常行為B.自動識別人員身份C.預(yù)測潛在的安全威脅D.智能監(jiān)控系統(tǒng)不需要考慮隱私保護(hù)問題19、在人工智能的可解釋性研究中,對于一個復(fù)雜的深度學(xué)習(xí)模型,假設(shè)需要向用戶解釋模型的決策依據(jù)和輸出結(jié)果。以下哪種方法能夠提供更直觀和易于理解的解釋?()A.特征重要性分析,確定輸入特征對輸出的影響B(tài).可視化中間層的激活值C.生成文本解釋,描述模型的推理過程D.以上都是20、人工智能在教育領(lǐng)域有潛在的應(yīng)用,例如個性化學(xué)習(xí)系統(tǒng)。假設(shè)要為學(xué)生提供個性化的學(xué)習(xí)路徑,以下哪種數(shù)據(jù)對于系統(tǒng)的設(shè)計最為關(guān)鍵?()A.學(xué)生的考試成績B.學(xué)生的學(xué)習(xí)時間C.學(xué)生的學(xué)習(xí)風(fēng)格和偏好D.學(xué)校的課程設(shè)置二、簡答題(本大題共5個小題,共25分)1、(本題5分)談?wù)勅斯ぶ悄茉谥悄茇攧?wù)管理風(fēng)險預(yù)警中的方法。2、(本題5分)談?wù)勅斯ぶ悄茉诹鞒虄?yōu)化中的作用。3、(本題5分)解釋人工智能在審計和風(fēng)險管理中的角色。4、(本題5分)談?wù)勅斯ぶ悄苤械哪P驮u估指標(biāo)。5、(本題5分)解釋人工智能在智慧城市建設(shè)和社區(qū)發(fā)展中的作用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)考察某智能玻璃制品質(zhì)量評估系統(tǒng)中人工智能的缺陷檢測和質(zhì)量分級效果。2、(本題5分)研究一個基于人工智能的房地產(chǎn)價格評估模型,評估其可靠性和影響因素。3、(本題5分)分析一個利用人工智能進(jìn)行智能攝影構(gòu)圖創(chuàng)新系統(tǒng),探討其如何突破傳統(tǒng)構(gòu)圖模式。4、(本題5分)研究一個基于人工智能的交通擁堵疏導(dǎo)策略生成系統(tǒng),評估其效果和適應(yīng)性。5、(本題5分)研究一個基于人工智能的物流倉儲布局優(yōu)化方案,分析其空間利用率和作業(yè)效率。四、操作題(本大題共3個小題,共30分)1、(本題10分)在Python中,運(yùn)用遺傳算法優(yōu)化一個簡單函數(shù)的參數(shù),使其取得最小值。定義適應(yīng)度函數(shù)、遺傳操作(選擇、交叉、變異),并展示優(yōu)化過程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論