版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題10數(shù)列不等式的放縮問題目錄01先求和后放縮 102裂項(xiàng)放縮 503等比放縮 904SKIPIF1<0型不等式的證明 1105SKIPIF1<0型不等式的證明 2006SKIPIF1<0型不等式的證明 2407SKIPIF1<0型不等式的證明 3201先求和后放縮1.(2023·山東菏澤·高三菏澤一中??茧A段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0______請(qǐng)?jiān)赟KIPIF1<0是公差為SKIPIF1<0的等差數(shù)列;SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,這三個(gè)條件中任選一個(gè)補(bǔ)充在上面題干中,并解答下面問題.(1)求SKIPIF1<0的通項(xiàng)公式SKIPIF1<0(2)在SKIPIF1<0與SKIPIF1<0之間插入SKIPIF1<0個(gè)實(shí)數(shù),使這SKIPIF1<0個(gè)數(shù)依次組成公差為SKIPIF1<0的等差數(shù)列,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,證明:SKIPIF1<0【解析】(1)若選SKIPIF1<0:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0所以SKIPIF1<0,則SKIPIF1<0時(shí),SKIPIF1<0累加得SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0滿足上式,故SKIPIF1<0.若選SKIPIF1<0,數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,首項(xiàng)為SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,兩式相減得SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0滿足上式,故SKIPIF1<0.若選SKIPIF1<0,數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,首項(xiàng)為SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0時(shí),SKIPIF1<0累加得SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0滿足上式,故SKIPIF1<0.(2)證明:由于SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.2.(2023·吉林白城·高三??茧A段練習(xí))已知公差不為零的等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0成等比數(shù)列.(1)求SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)設(shè)SKIPIF1<0的公差為SKIPIF1<0,因?yàn)镾KIPIF1<0成等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.(2)由(1)得,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.3.(2023·天津·高三校聯(lián)考期中)已知數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0是等比數(shù)列;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0(3)設(shè)數(shù)列SKIPIF1<0滿足:SKIPIF1<0.證明:SKIPIF1<0.【解析】(1)由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0是以2為首項(xiàng),2為公比的等比數(shù)列,即SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,顯然SKIPIF1<0也滿足,故SKIPIF1<0,結(jié)合SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0,故SKIPIF1<0.(3)當(dāng)n為奇數(shù)時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)n為偶數(shù)時(shí),SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,兩式相減得SKIPIF1<0,得SKIPIF1<0,
所以SKIPIF1<0,所以SKIPIF1<0,得證.4.(2023·陜西西安·高三西安市第三中學(xué)??计谥校┰O(shè)各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.證明:對(duì)一切正整數(shù)SKIPIF1<0,SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,所以數(shù)列SKIPIF1<0的通項(xiàng)公式是SKIPIF1<0(2)由(1)可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.02裂項(xiàng)放縮5.(2023·貴州黔東南·高三天柱民族中學(xué)校聯(lián)考階段練習(xí))已知正項(xiàng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,由數(shù)列為正項(xiàng)數(shù)列可知,SKIPIF1<0,又SKIPIF1<0,即數(shù)列SKIPIF1<0是首項(xiàng)為1,公差為1的等差數(shù)列,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,所以SKIPIF1<0(2)由(1)可知,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,成立,SKIPIF1<0,成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0.綜上可知,SKIPIF1<0,得證.6.(2023·湖南常德·高三臨澧縣第一中學(xué)??茧A段練習(xí))已知數(shù)列SKIPIF1<0為等差數(shù)列,數(shù)列SKIPIF1<0為等比數(shù)列,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式;(2)已知SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0;(3)求證:SKIPIF1<0.【解析】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0.得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.(2)當(dāng)SKIPIF1<0是奇數(shù)時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0是偶數(shù)時(shí),SKIPIF1<0,則SKIPIF1<0①SKIPIF1<0②①-②得:SKIPIF1<0即SKIPIF1<0SKIPIF1<0化簡(jiǎn)得:SKIPIF1<0.SKIPIF1<0SKIPIF1<0所以SKIPIF1<0.(3)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0也成立.故SKIPIF1<0.7.(2023·福建廈門·高三廈門一中??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)判斷數(shù)列SKIPIF1<0是否是等比數(shù)列?若是,給出證明;否則,請(qǐng)說明理由;(2)若數(shù)列SKIPIF1<0的前10項(xiàng)和為361,記SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)數(shù)列SKIPIF1<0成等比數(shù)列,證明如下:根據(jù)SKIPIF1<0得,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即數(shù)列SKIPIF1<0成等比數(shù)列.(2)由(1)得,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0,綜上,知SKIPIF1<08.(2023·河北唐山·模擬預(yù)測(cè))已知SKIPIF1<0和SKIPIF1<0是公差相等的等差數(shù)列,且公差SKIPIF1<0的首項(xiàng)SKIPIF1<0,記SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0.(1)求SKIPIF1<0和SKIPIF1<0;(2)若SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)由已知得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0.(2)由(1)得SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,得證.03等比放縮9.(2023·廣東梅州·高三梅州市梅江區(qū)梅州中學(xué)??茧A段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng).(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,若數(shù)列SKIPIF1<0是遞增數(shù)列,求SKIPIF1<0的取值范圍.(3)設(shè)SKIPIF1<0,且數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,SKIPIF1<0,SKIPIF1<0.(2)由(1)得:SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0為遞增數(shù)列,SKIPIF1<0SKIPIF1<0;①當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0為遞減數(shù)列,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0;②當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,由①知:數(shù)列SKIPIF1<0為遞減數(shù)列,則數(shù)列SKIPIF1<0為遞增數(shù)列,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0;綜上所述:SKIPIF1<0的取值范圍為SKIPIF1<0.(3)由(1)得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<010.(2023·全國·高三專題練習(xí))求證:SKIPIF1<0(SKIPIF1<0).【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,兩式相減得SKIPIF1<0,所以SKIPIF1<0,即不等式SKIPIF1<0(SKIPIF1<0)得證.11.(2023·重慶·高三統(tǒng)考階段練習(xí))記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0是等比數(shù)列;(2)求證:SKIPIF1<0.【解析】(1)由于SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,所以數(shù)列SKIPIF1<0是一個(gè)首項(xiàng)為1,公比為2的一個(gè)等比數(shù)列;(2)由(1)可知SKIPIF1<0,SKIPIF1<0,所以原式SKIPIF1<0,又因?yàn)镾KIPIF1<0恒成立,所以SKIPIF1<0.04SKIPIF1<0型不等式的證明12.(2023·河南·方城第一高級(jí)中學(xué)校聯(lián)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)證明:SKIPIF1<0;(2)若正項(xiàng)數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,記SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0(SKIPIF1<0).【解析】(1)證明:(1)令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.令SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.(2)(2)由(1)知SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,…,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0),∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,接下來只需證明:SKIPIF1<0,即SKIPIF1<0,即證SKIPIF1<0,由函數(shù)SKIPIF1<0中,SKIPIF1<0,對(duì)稱軸為SKIPIF1<0,試證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,顯然成立,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0SKIPIF1<0成立,綜上,SKIPIF1<0(SKIPIF1<0).13.(2023·江西萍鄉(xiāng)·高三統(tǒng)考期中)已知函數(shù)SKIPIF1<0.(1)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立;(2)首項(xiàng)為SKIPIF1<0的數(shù)列SKIPIF1<0滿足:當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)要證SKIPIF1<0,即SKIPIF1<0,只需證SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,即SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立;(2)SKIPIF1<0,由(1)知SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,依此類推,可知SKIPIF1<0,SKIPIF1<0等價(jià)于SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(等價(jià)于SKIPIF1<0),下證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,因?yàn)镾KIPIF1<0,則只要證SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,即SKIPIF1<0單調(diào)遞增,SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0.14.(2023·重慶·高三校聯(lián)考期中)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)之積為SKIPIF1<0,滿足SKIPIF1<0.(1)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)之和為SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)因?yàn)閿?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)之積為SKIPIF1<0,滿足SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,化為SKIPIF1<0,變形為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0,則數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列所以SKIPIF1<0.(2)由(1)可得:SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.SKIPIF1<0,需要證明SKIPIF1<0,即證明SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.15.(2023·廣東廣州·高三華南師大附中??茧A段練習(xí))已知正數(shù)數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0.(函數(shù)SKIPIF1<0求導(dǎo)SKIPIF1<0次可用SKIPIF1<0表示)(1)求SKIPIF1<0的通項(xiàng)公式.(2)求證:對(duì)任意的SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0.【解析】(1)由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,令SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,……SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,……所以SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,綜上對(duì)任意的SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0.16.(2023·黑龍江哈爾濱·高二哈爾濱三中??茧A段練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0;(2)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0;(?。┣骃KIPIF1<0;(ⅱ)求證:SKIPIF1<0.【解析】(1)證明:令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0不恒為零,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0.(2)(i)對(duì)任意的SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,上述兩個(gè)等式作差可得SKIPIF1<0,所以,SKIPIF1<0,所以,數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,故SKIPIF1<0;(ii)令SKIPIF1<0,其中SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0不恒為零,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因?yàn)镾KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,此時(shí)數(shù)列SKIPIF1<0從第二項(xiàng)開始單調(diào)遞減,所以,對(duì)任意的SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,上述兩個(gè)等式作差可得SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,所以,SKIPIF1<0,綜上所述,對(duì)任意的SKIPIF1<0,SKIPIF1<0.17.(2023·四川·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的取值范圍;(2)證明:SKIPIF1<0.【解析】(1)由題設(shè)SKIPIF1<0,設(shè)SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0均小于零,所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0,可設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,不符合題意.綜上,SKIPIF1<0的取值范圍是SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.18.(2023·海南·??谑协偵饺A僑中學(xué)校聯(lián)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在SKIPIF1<0上只有一個(gè)零點(diǎn),求SKIPIF1<0的取值范圍;(2)若SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)根據(jù)題意得,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0為函數(shù)SKIPIF1<0的一個(gè)零點(diǎn).SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0恒成立,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0時(shí),函數(shù)SKIPIF1<0僅有SKIPIF1<0這一個(gè)零點(diǎn).當(dāng)SKIPIF1<0時(shí),由于SKIPIF1<0,SKIPIF1<0,根據(jù)零點(diǎn)存在性定理,必存在SKIPIF1<0,使得SKIPIF1<0.由于SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,此時(shí)SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可知SKIPIF1<0,故函數(shù)SKIPIF1<0還有一個(gè)在SKIPIF1<0上的零點(diǎn),不合題意,舍去.綜上所述,SKIPIF1<0的取值范圍為SKIPIF1<0.(2)證明:依題意,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0即SKIPIF1<0,SKIPIF1<0成立,當(dāng)SKIPIF1<0時(shí),由(1)可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,(SKIPIF1<0),綜合以上可知SKIPIF1<0.05SKIPIF1<0型不等式的證明19.(2023·黑龍江大慶·高二大慶一中??茧A段練習(xí))已知曲線Cn:x2﹣2nx+y2=0,(n=1,2,…).從點(diǎn)P(﹣1,0)向曲線Cn引斜率為kn(kn>0)的切線ln,切點(diǎn)為Pn(xn,yn).(1)求數(shù)列{xn}與{yn}的通項(xiàng)公式;(2)證明:SKIPIF1<0.【解析】(1)設(shè)直線ln:y=kn(x+1),聯(lián)立x2﹣2nx+y2=0,得(1+kn2)x2+(2kn2﹣2n)x+kn2=0,則△=(2kn2﹣2n)2﹣4(1+kn2)kn2=0,∴knSKIPIF1<0(負(fù)值舍去),可得xnSKIPIF1<0,yn=kn(1+xn)SKIPIF1<0;(2)證明:SKIPIF1<0,由4n2>4n2﹣1,即為SKIPIF1<0,即有SKIPIF1<0,x1x3x5…x2n﹣1SKIPIF1<0,可得x1x3x5…x2n﹣1SKIPIF1<0;由SKIPIF1<0,設(shè)f(x)=xSKIPIF1<0cosx,f′(x)=1SKIPIF1<0sinx,由0SKIPIF1<0,可得sinx>0,即f′(x)>0,f(x)在(0,SKIPIF1<0]遞增,由f(0)SKIPIF1<00,f(SKIPIF1<0)SKIPIF1<0cosSKIPIF1<0(cosSKIPIF1<0cosSKIPIF1<0)<0,可得xSKIPIF1<0cosx,即有SKIPIF1<0cosSKIPIF1<0,即SKIPIF1<0cosSKIPIF1<0,則SKIPIF1<0.20.(2023·浙江溫州·高二校聯(lián)考期末)已知數(shù)列SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0及SKIPIF1<0;(2)猜想SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式,并證明你的結(jié)論;(3)證明:對(duì)所有的SKIPIF1<0,SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,得到SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;令SKIPIF1<0,得到SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;令SKIPIF1<0,得到SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;(2)證明:猜測(cè)SKIPIF1<0,SKIPIF1<0,用數(shù)學(xué)歸納法證明:①當(dāng)SKIPIF1<0時(shí),由上可得結(jié)論成立.②假設(shè)當(dāng)SKIPIF1<0時(shí),結(jié)論成立,即SKIPIF1<0,SKIPIF1<0,那么當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),結(jié)論也成立.由①②,可知SKIPIF1<0,SKIPIF1<0對(duì)一切正整數(shù)都成立.(3)由(2)知,SKIPIF1<0,于是所證明的不等式即為SKIPIF1<0(?。┫茸C明:SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0(ⅱ)再證明SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.因?yàn)樵趨^(qū)間SKIPIF1<0上SKIPIF1<0為增函數(shù),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而SKIPIF1<0在區(qū)間SKIPIF1<0上為單調(diào)遞減函數(shù),因此SKIPIF1<0對(duì)于一切SKIPIF1<0都成立,所以SKIPIF1<0SKIPIF1<0綜上所述,對(duì)所有的SKIPIF1<0,均有SKIPIF1<0成立.21.(2023·山東青島·高二統(tǒng)考期末)在各項(xiàng)為正數(shù)的數(shù)列SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上;對(duì)于數(shù)列SKIPIF1<0,點(diǎn)SKIPIF1<0在過點(diǎn)SKIPIF1<0,且以SKIPIF1<0為方向向量的直線SKIPIF1<0上.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,問是否存在SKIPIF1<0,使SKIPIF1<0成立?若存在,求出SKIPIF1<0的值;若不存在,請(qǐng)說明理由;(3)對(duì)任意正整數(shù)SKIPIF1<0,不等式SKIPIF1<0都成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)由題意可得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0,所以,數(shù)列SKIPIF1<0為等差數(shù)列,且首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,故SKIPIF1<0.過點(diǎn)SKIPIF1<0,且以SKIPIF1<0為方向向量的直線SKIPIF1<0的方程為SKIPIF1<0,由已知可得SKIPIF1<0.(2)由已知可得SKIPIF1<0.當(dāng)SKIPIF1<0為正奇數(shù)時(shí),則SKIPIF1<0為偶數(shù),由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0,合乎題意;當(dāng)SKIPIF1<0為正偶數(shù)時(shí),則SKIPIF1<0為奇數(shù),由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0,合乎題意.綜上所述,SKIPIF1<0或SKIPIF1<0.(3)因?yàn)镾KIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以,SKIPIF1<0,故數(shù)列SKIPIF1<0為單調(diào)遞增數(shù)列,所以數(shù)列SKIPIF1<0的最小項(xiàng)為SKIPIF1<0,所以,SKIPIF1<0.06SKIPIF1<0型不等式的證明22.(2023·山西·高三統(tǒng)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)證明:對(duì)SKIPIF1<0恒成立;(2)是否存在SKIPIF1<0,使得SKIPIF1<0成立?請(qǐng)說明理由.【解析】(1)證明:由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,且當(dāng)且僅當(dāng)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋買賣合同效力認(rèn)定解析與探討
- 標(biāo)準(zhǔn)合同英文版采購范本
- 宜人貸借款合同范本解讀
- 采購合同范本固定位置
- 設(shè)備維修保養(yǎng)合同范本
- 軍事訂購合同樣本
- 標(biāo)準(zhǔn)翻譯服務(wù)合同協(xié)議書格式
- 工程招標(biāo)文件港口工程
- 泰安房屋買賣合同風(fēng)險(xiǎn)提示
- 租賃合同權(quán)益轉(zhuǎn)讓聲明范例
- GB/T 19964-2024光伏發(fā)電站接入電力系統(tǒng)技術(shù)規(guī)定
- 籃球比賽記錄表
- 2022-2023學(xué)年北京市朝陽區(qū)初一(上)期末考試英語試卷(含詳細(xì)答案解析)
- 《初中班會(huì)課件:如何正確對(duì)待網(wǎng)絡(luò)暴力》
- 保險(xiǎn)金信托培訓(xùn)課件
- 芒果干行業(yè)標(biāo)準(zhǔn)
- 常用家庭園養(yǎng)植物課件
- 腫瘤科化療患者護(hù)理PDCA循環(huán)案例
- 國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)評(píng)分表
- 云南大理州諾鄧古村旅游
- 燒傷科普講座課件
評(píng)論
0/150
提交評(píng)論