新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題04 函數(shù)及其性質(zhì)(原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題04 函數(shù)及其性質(zhì)(原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題04 函數(shù)及其性質(zhì)(原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題04 函數(shù)及其性質(zhì)(原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題04 函數(shù)及其性質(zhì)(原卷版)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題04講:函數(shù)及其性質(zhì)【考點專題】1.函數(shù)函數(shù)兩個集合A,B設(shè)A,B是兩個非空數(shù)集對應(yīng)關(guān)系f:A→B如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng)名稱稱f:A→B為從集合A到集合B的一個函數(shù)函數(shù)記法函數(shù)y=f(x),x∈A2.函數(shù)的三要素(1)定義域:x的取值范圍;(2)值域:y的取值范圍.(3)對應(yīng)關(guān)系f:A→B.3.相等函數(shù):定義域、對應(yīng)關(guān)系都一致.4.函數(shù)的表示法:解析法、圖象法和列表法.5.分段函數(shù)若函數(shù)在其定義域的不同子集上,因?qū)?yīng)關(guān)系不同而分別用幾個不同的式子來表示,這種函數(shù)稱為分段函數(shù).6.函數(shù)的單調(diào)性(1)單調(diào)函數(shù)的定義增函數(shù)減函數(shù)定義一般地,設(shè)函數(shù)f(x)的定義域為I,區(qū)間D?I,如果?x1,x2∈D當(dāng)x1<x2時,都有f(x1)<f(x2),那么就稱函數(shù)f(x)在區(qū)間D上單調(diào)遞增,特別地,當(dāng)函數(shù)f(x)在它的定義域上單調(diào)遞增時,我們就稱它是增函數(shù)當(dāng)x1<x2時,都有f(x1)>f(x2),那么就稱函數(shù)f(x)在區(qū)間D上單調(diào)遞減,特別地,當(dāng)函數(shù)f(x)在它的定義域上單調(diào)遞減時,我們就稱它是減函數(shù)圖象描述自左向右看圖象是上升的自左向右看圖象是下降的(2)單調(diào)區(qū)間的定義如果函數(shù)y=f(x)在區(qū)間D上單調(diào)遞增或單調(diào)遞減,那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴格的)單調(diào)性,區(qū)間D叫做y=f(x)的單調(diào)區(qū)間.7.函數(shù)的最值前提設(shè)函數(shù)y=f(x)的定義域為I,如果存在實數(shù)M滿足條件(1)?x∈I,都有f(x)≤M;(2)?x0∈I,使得f(x0)=M(1)對于?x∈I,都有f(x)≥M;(2)?x0∈I,使得f(x0)=M結(jié)論M為最大值M為最小值8.函數(shù)的奇偶性奇偶性定義圖象特點偶函數(shù)一般地,設(shè)函數(shù)f(x)的定義域為I,如果?x∈I,都有-x∈I,且f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)關(guān)于y軸對稱奇函數(shù)一般地,設(shè)函數(shù)f(x)的定義域為I,如果?x∈I,都有-x∈I,且f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)關(guān)于原點對稱9.周期性(1)周期函數(shù):對于函數(shù)y=f(x),如果存在一個非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的任何值時,都有f(x+T)=f(x),那么就稱函數(shù)y=f(x)為周期函數(shù),稱T為這個函數(shù)的周期.(2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期.(3)函數(shù)周期性常用結(jié)論對f(x)定義域內(nèi)任一自變量的值x:(1)若f(x+a)=-f(x),則T=2a(a>0).(2)若f(x+a)=eq\f(1,fx),則T=2a(a>0).(3)若f(x+a)=-eq\f(1,fx),則T=2a(a>0).(4)若f(x+a)+f(x)=c,則T=2a(a>0,c為常數(shù)).10.對稱性對稱性的三個常用結(jié)論(1)若函數(shù)f(x)滿足f(a+x)=f(b-x),則y=f(x)的圖象關(guān)于直線x=eq\f(a+b,2)對稱.(2)若函數(shù)f(x)滿足f(a+x)=-f(b-x),則y=f(x)的圖象關(guān)于點eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2),0))對稱.(3)若函數(shù)f(x)滿足f(a+x)+f(b-x)=c,則函數(shù)f(x)的圖象關(guān)于點eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2),\f(c,2)))對稱.【方法技巧】1.求函數(shù)值域的一般方法:①分離常數(shù)法;②配方法;③不等式法;=4\*GB3④單調(diào)性法;=5\*GB3⑤換元法;=6\*GB3⑥數(shù)形結(jié)合法;=7\*GB3⑦導(dǎo)數(shù)法.2.確定函數(shù)單調(diào)性的四種方法(1)定義法:利用定義判斷.(2)導(dǎo)數(shù)法:適用于初等函數(shù)、復(fù)合函數(shù)等可以求導(dǎo)的函數(shù).(3)圖象法:由圖象確定函數(shù)的單調(diào)區(qū)間需注意兩點:一是單調(diào)區(qū)間必須是函數(shù)定義域的子集;二是圖象不連續(xù)的單調(diào)區(qū)間要分開寫,用“和”或“,”連接,不能用“∪”連接.(4)性質(zhì)法:利用函數(shù)單調(diào)性的性質(zhì),尤其是利用復(fù)合函數(shù)“同增異減”的原則時,需先確定簡單函數(shù)的單調(diào)性.3.函數(shù)單調(diào)性應(yīng)用問題的常見類型及解題策略(1)比較大?。?2)求最值.(3)解不等式.利用函數(shù)的單調(diào)性將“f”符號去掉,轉(zhuǎn)化為具體的不等式求解,應(yīng)注意函數(shù)的定義域.(4)利用單調(diào)性求參數(shù).①依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較.②需注意若函數(shù)在區(qū)間[a,b]上單調(diào),則該函數(shù)在此區(qū)間的任意子區(qū)間上也單調(diào).③分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點的取值.4.利用函數(shù)奇偶性可以解決以下問題(1)求函數(shù)值:將待求值利用奇偶性轉(zhuǎn)化為求已知解析式的區(qū)間上的函數(shù)值.(2)求解析式:將待求區(qū)間上的自變量轉(zhuǎn)化到已知解析式的區(qū)間上,再利用奇偶性的定義求出.(3)求解析式中的參數(shù):利用待定系數(shù)法求解,根據(jù)f(x)±f(-x)=0得到關(guān)于參數(shù)的恒等式,由系數(shù)的對等性得方程(組),進而得出參數(shù)的值.(4)畫函數(shù)圖象:利用函數(shù)的奇偶性可畫出函數(shù)在其對稱區(qū)間上的圖象.(5)求特殊值:利用奇函數(shù)的最大值與最小值之和為零可求一些特殊結(jié)構(gòu)的函數(shù)值.【核心題型】題型一:求函數(shù)的定義域1.(2012·山東·高考真題(文))函數(shù)SKIPIF1<0的定義域為()A.[-2,0)∪(0,2] B.(-1,0)∪(0,2]C.[-2,2] D.(-1,2]2.(2021·全國·高一專題練習(xí))已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則SKIPIF1<0的定義域為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2011·河北衡水·三模(理))已知函數(shù)的定義域為R,則實數(shù)k的取值范圍是()A. B. C. D.題型二:求函數(shù)的值域4.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國·高三專題練習(xí))高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),則SKIPIF1<0稱為高斯函數(shù).例如:SKIPIF1<0,SKIPIF1<0,已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的值域為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·全國·高一課時練習(xí))已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是___________.題型三:復(fù)合函數(shù)的單調(diào)性7.(2022·全國·高三專題練習(xí))下列四個函數(shù)中既是奇函數(shù),又是增函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.(2020·寧夏·青銅峽市寧朔中學(xué)高三階段練習(xí)(理))設(shè)函數(shù)SKIPIF1<0,則使得SKIPIF1<0成立的x的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<09.(2019·福建省長樂第一中學(xué)高一階段練習(xí))函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型四:根據(jù)函數(shù)的單調(diào)性與奇偶性解不等式10.(2020·全國·高一課時練習(xí))已知函數(shù)SKIPIF1<0是定義在R上的偶函數(shù),且在區(qū)間SKIPIF1<0單調(diào)遞增.若實數(shù)a滿足SKIPIF1<0,則a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011.(2022·全國·高三專題練習(xí))設(shè)SKIPIF1<0為定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0(SKIPIF1<0為常數(shù)),則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.(2022·湖南師大附中高三階段練習(xí))已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,且對任意的SKIPIF1<0,都有SKIPIF1<0SKIPIF1<0,則滿足不等式SKIPIF1<0的SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型五:奇偶函數(shù)對稱性的應(yīng)用13.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0的零點的個數(shù)為(

)A.6 B.7 C.8 D.914.(2022·全國·高一課時練習(xí))設(shè)SKIPIF1<0為定義在R上的函數(shù),函數(shù)SKIPIF1<0是奇函數(shù).對于下列四個結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③函數(shù)SKIPIF1<0的圖象關(guān)于原點對稱;④函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱;其中,正確結(jié)論的個數(shù)為(

)A.1 B.2 C.3 D.415.(2022·江蘇·揚州中學(xué)高三開學(xué)考試)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù)且滿足SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0(SKIPIF1<0且SKIPIF1<0).若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型六:函數(shù)周期性的應(yīng)用16.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)是(

)A.2 B.3 C.4 D.517.(2019·全國·高三專題練習(xí)(文))定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0滿足:對任意的實數(shù)SKIPIF1<0都有SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0的值為()A.2017 B.1010 C.1008 D.218.(2009·山東·高考真題(理))已知定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且在區(qū)間SKIPIF1<0上是增函數(shù),若方程SKIPIF1<0在區(qū)間SKIPIF1<0上有四個不同的根,則SKIPIF1<0題型七:由函數(shù)對稱性求函數(shù)值或參數(shù)19.(2022·全國·高一課時練習(xí))已知函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<020.(2022·全國·高一課時練習(xí))設(shè)定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0,滿足對任意的SKIPIF1<0都有SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的值等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<021.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的圖象關(guān)于原點對稱,且滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型八:不等式恒(能)成立問題22.(2021·浙江·模擬預(yù)測)已知函數(shù)SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0恒成立的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分不必要條件23.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若對于任意的實數(shù)x,不等式SKIPIF1<0恒成立,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<024.(2022·廣西·桂電中學(xué)高三階段練習(xí))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0,SKIPIF1<0.若對SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<025.(2023·全國·高三專題練習(xí))若SKIPIF1<0,使SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是______________.26.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的值域是___________.設(shè)函數(shù)SKIPIF1<0,若對于任意實數(shù)SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是___________27.(2020·全國·高二課時練習(xí)(文))已知SKIPIF1<0,SKIPIF1<0,若對SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是_________.【高考必刷】一、選擇題1.(2007·江西·高考真題(文))函數(shù)SKIPIF1<0的定義域為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2013·山東·高考真題(文))函數(shù)SKIPIF1<0的定義域是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2020·浙江溫州·高一競賽)已知集合SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·全國·高一單元測試)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2007·湖北·高考真題(理))設(shè)SKIPIF1<0,則SKIPIF1<0的定義域為().A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)6.(2023·全國·高三專題練習(xí))高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的美譽,用其名字命名的“高斯函數(shù)”:設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),則SKIPIF1<0稱為高斯函數(shù),也稱取整函數(shù),例如:SKIPIF1<0,SKIPIF1<0.已知SKIPIF1<0,則函數(shù)SKIPIF1<0的值域為(

)A.SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,0,SKIPIF1<07.(2008·重慶·高考真題(理))已知函數(shù)SKIPIF1<0+SKIPIF1<0的最大值為M,最小值為m,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2022·新疆·烏市八中高二期末(文))設(shè)SKIPIF1<0,SKIPIF1<0,若對于任意SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2018·全國·高三課時練習(xí)(文))已知函數(shù)SKIPIF1<0,則下列說法錯誤的是(

)A.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增 B.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減C.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱 D.SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱11.(2021·全國·高一專題練習(xí))設(shè)SKIPIF1<0是SKIPIF1<0上的奇函數(shù),且SKIPIF1<0在SKIPIF1<0上是減函數(shù),又SKIPIF1<0,則不等式SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.(2019·河南·淇濱高中高一期中)已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.(2021·全國·高一課時練習(xí))在SKIPIF1<0上定義的函數(shù)SKIPIF1<0是偶函數(shù),且SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù),則SKIPIF1<0()A.在區(qū)間SKIPIF1<0上是增函數(shù),在區(qū)間SKIPIF1<0上是增函數(shù)B.在區(qū)間SKIPIF1<0上是增函數(shù),在區(qū)間SKIPIF1<0上是減函數(shù)C.在區(qū)間SKIPIF1<0上是減函數(shù),在區(qū)間SKIPIF1<0上是增函數(shù)D.在區(qū)間SKIPIF1<0上是減函數(shù),在區(qū)間SKIPIF1<0上是減函數(shù)14.(2021·全國·高一課時練習(xí))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足:當(dāng)SKIPIF1<0時,SKIPIF1<0,則在SKIPIF1<0上方程SKIPIF1<0的實根個數(shù)為(

)A.1 B.3 C.2 D.202115.(2021·廣西·一模(理))已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0是偶函數(shù),SKIPIF1<0是奇函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<016.(2018·全國·高考真題(文))已知SKIPIF1<0是定義域為SKIPIF1<0的奇函數(shù),滿足SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.(2021·貴州·安順市第三高級中學(xué)高三階段練習(xí)(文))若定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0時,SKIPIF1<0,則方程SKIPIF1<0的根的個數(shù)是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<018.(2018·新疆烏魯木齊·一模(文))奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.-2 B.SKIPIF1<0 C.SKIPIF1<0 D.219.(2022·四川·成都金蘋果錦城第一中學(xué)高三期中(文))已知定義域是R的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0,則SKIPIF1<0(

)A.1 B.-1 C.2 D.-320.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0滿足SKIPIF1<0對任意SKIPIF1<0恒成立,又函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,且SKIPIF1<0則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<021.(2020·全國·高考真題(文))已知函數(shù)f(x)=sinx+SKIPIF1<0,則()A.f(x)的最小值為2 B.f(x)的圖象關(guān)于y軸對稱C.f(x)的圖象關(guān)于直線SKIPIF1<0對稱 D.f(x)的圖象關(guān)于直線SKIPIF1<0對稱22.(2022·全國·高一課時練習(xí))對SKIPIF1<0,不等式SKIPIF1<0恒成立,則a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<023.(2023·全國·高三專題練習(xí))不等式SKIPIF1<0恒成立,則實數(shù)k的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<024.(2018·新疆烏魯木齊·一模(文))已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<025.(2022·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0,若存在唯一整數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<026.(2021·全國·高一課時練習(xí))當(dāng)SKIPIF1<0時,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0有解,則實數(shù)SKIPIF1<0的取值范圍是(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<027.(2022·全國·高三專題練習(xí))若存在正數(shù)SKIPIF1<0使SKIPIF1<0成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題28.(2022·全國·高三專題練習(xí))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0且SKIPIF1<0在SKIPIF1<0上是增函數(shù),給出下列真命題的有(

)A.SKIPIF1<0是周期函數(shù);B.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱;C.SKIPIF1<0在SKIPIF1<0上是減函數(shù);D.SKIPIF1<0.29.(2022·全國·高一課時練習(xí))若定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,在區(qū)間SKIPIF1<0上,有SKIPIF1<0,則下列說法正確的是(

)A.函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0成中心對稱B.函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0成軸對稱C.在區(qū)間SKIPIF1<0上,SKIPIF1<0為減函數(shù)D.SKIPIF1<030.(2022·江蘇·高郵市第一中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0,則下列說法中正確的有(

)A.函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱B.4是函數(shù)SKIPIF1<0的周期C.SKIPIF1<0D.方程SKIPIF1<0恰有4不同的根31.(2022·全國·高三專題練習(xí))已知三次函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0的圖象關(guān)于點(1,0)對稱,且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0有3個零點C.SKIPIF1<0的對稱中心是SKIPIF1<0 D.SKIPIF1<0三、填空題32.(2007·重慶·高考真題(理))若函數(shù)f(x)=SKIPIF1<0的定義域為R,則a的取值范圍為________.33.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是____________.34.(2022·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的值域為________.35.(2022·廣東·模擬預(yù)測)設(shè)定義域

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論