新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)講義第二十六講圓錐曲線(原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)講義第二十六講圓錐曲線(原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)講義第二十六講圓錐曲線(原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)講義第二十六講圓錐曲線(原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)講義第二十六講圓錐曲線(原卷版)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二十六講:橢圓、雙曲線、拋物線【考點(diǎn)梳理】求曲線的軌跡方程直接法、定義法、相關(guān)點(diǎn)法橢圓方程橢圓相關(guān)計(jì)算(1)橢圓標(biāo)準(zhǔn)方程中的三個(gè)量SKIPIF1<0的幾何意義SKIPIF1<0(2)通徑:過焦點(diǎn)且垂直于長(zhǎng)軸的弦,其長(zhǎng)SKIPIF1<0焦點(diǎn)弦:橢圓過焦點(diǎn)的弦。最短的焦點(diǎn)弦為通經(jīng)SKIPIF1<0,最長(zhǎng)為SKIPIF1<0。(3)最大角:SKIPIF1<0是橢圓上一點(diǎn),當(dāng)SKIPIF1<0是橢圓的短軸端點(diǎn)時(shí),SKIPIF1<0為最大角。(4)橢圓上一點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形稱為焦點(diǎn)三角形。焦點(diǎn)三角形的面積SKIPIF1<0,其中SKIPIF1<0(注意公式的推導(dǎo))雙曲線(1)雙曲線的通徑過雙曲線的焦點(diǎn)且與雙曲線實(shí)軸垂直的直線被雙曲線截得的線段,稱為雙曲線的通徑.通徑長(zhǎng)為SKIPIF1<0.(2)點(diǎn)與雙曲線的位置關(guān)系對(duì)于雙曲線SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線內(nèi)部,等價(jià)于SKIPIF1<0.點(diǎn)SKIPIF1<0在雙曲線外部,等價(jià)于SKIPIF1<0結(jié)合線性規(guī)劃的知識(shí)點(diǎn)來分析.(3)雙曲線??夹再|(zhì)性質(zhì)1:雙曲線的焦點(diǎn)到兩條漸近線的距離為常數(shù)SKIPIF1<0;頂點(diǎn)到兩條漸近線的距離為常數(shù)SKIPIF1<0;性質(zhì)2:雙曲線上的任意點(diǎn)SKIPIF1<0到雙曲線C的兩條漸近線的距離的乘積是一個(gè)常數(shù)SKIPIF1<0;(4)雙曲線焦點(diǎn)三角形面積為SKIPIF1<0(可以這樣理解,頂點(diǎn)越高,張角越小,分母越小,面積越大)(5)雙曲線的切線點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0SKIPIF1<0上,過點(diǎn)SKIPIF1<0作雙曲線的切線方程為SKIPIF1<0.若點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0SKIPIF1<0外,則點(diǎn)SKIPIF1<0對(duì)應(yīng)切點(diǎn)弦方程為SKIPIF1<0拋物線(1)、焦半徑拋物線上的點(diǎn)SKIPIF1<0與焦點(diǎn)SKIPIF1<0的距離稱為焦半徑,若SKIPIF1<0,則焦半徑SKIPIF1<0,SKIPIF1<0.(2)、焦點(diǎn)弦若SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn)弦,SKIPIF1<0,SKIPIF1<0,則有以下結(jié)論:(1)SKIPIF1<0.(2)SKIPIF1<0.(3)焦點(diǎn)弦長(zhǎng)公式1:SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),焦點(diǎn)弦取最小值SKIPIF1<0,即所有焦點(diǎn)弦中通徑最短,其長(zhǎng)度為SKIPIF1<0.焦點(diǎn)弦長(zhǎng)公式2:SKIPIF1<0(SKIPIF1<0為直線SKIPIF1<0與對(duì)稱軸的夾角).(4)SKIPIF1<0的面積公式:SKIPIF1<0(SKIPIF1<0為直線SKIPIF1<0與對(duì)稱軸的夾角).(3)、拋物線的通徑過焦點(diǎn)且垂直于拋物線對(duì)稱軸的弦叫做拋物線的通徑.對(duì)于拋物線SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,故拋物線的通徑長(zhǎng)為SKIPIF1<0.(4)、弦的中點(diǎn)坐標(biāo)與弦所在直線的斜率的關(guān)系:SKIPIF1<0(5)、焦點(diǎn)弦的常考性質(zhì)已知SKIPIF1<0、SKIPIF1<0是過拋物線SKIPIF1<0焦點(diǎn)SKIPIF1<0的弦,SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0是拋物線的準(zhǔn)線,SKIPIF1<0,SKIPIF1<0為垂足.(1)以SKIPIF1<0為直徑的圓必與準(zhǔn)線SKIPIF1<0相切,以AF(或BF)為直徑的圓與y軸相切;(2)SKIPIF1<0,SKIPIF1<0(3)SKIPIF1<0;SKIPIF1<0(4)設(shè)SKIPIF1<0,SKIPIF1<0為垂足,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)在一條直線上【典型題型講解】考點(diǎn)一:橢圓【典例例題】例1.(2022·廣東清遠(yuǎn)·高三期末)若橢圓SKIPIF1<0的焦距為6,則實(shí)數(shù)SKIPIF1<0(

)A.13 B.40 C.5 D.SKIPIF1<0例2.(2022·廣東珠海·高三期末)已知橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為4,左頂點(diǎn)A到上頂點(diǎn)B的距離為SKIPIF1<0,F(xiàn)為右焦點(diǎn).(1)求橢圓C的方程和離心率;(2)設(shè)直線l與橢圓C交于不同的兩點(diǎn)M,N(不同于A,B兩點(diǎn)),且直線SKIPIF1<0時(shí),求F在l上的射影H的軌跡方程.【方法技巧與總結(jié)】標(biāo)準(zhǔn)方程SKIPIF1<0SKIPIF1<0圖形性質(zhì)焦點(diǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0焦距SKIPIF1<0SKIPIF1<0范圍SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0對(duì)稱性關(guān)于SKIPIF1<0軸、SKIPIF1<0軸和原點(diǎn)對(duì)稱頂點(diǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0軸長(zhǎng)軸長(zhǎng)SKIPIF1<0SKIPIF1<0,短軸長(zhǎng)SKIPIF1<0SKIPIF1<0離心率SKIPIF1<0(注:離心率越小越圓,越大越扁)【變式訓(xùn)練】1.(2022·廣東佛山·高三期末)(多選)已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,上頂點(diǎn)為B,且SKIPIF1<0,點(diǎn)P在C上,線段SKIPIF1<0與SKIPIF1<0交于Q,SKIPIF1<0,則(

)A.橢圓C的離心率為SKIPIF1<0 B.橢圓C上存在點(diǎn)K,使得SKIPIF1<0C.直線SKIPIF1<0的斜率為SKIPIF1<0 D.SKIPIF1<0平分SKIPIF1<02.(2022·廣東·金山中學(xué)高三期末)已知橢圓SKIPIF1<0:SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0,若在橢圓SKIPIF1<0上不存在點(diǎn)P,使得由點(diǎn)P所作的圓SKIPIF1<0的兩條切線互相垂直,則橢圓SKIPIF1<0的離心率的取值范圍是________.3.(2022·廣東汕尾·高三期末)已知SKIPIF1<0分別是橢圓C:SKIPIF1<0的左、右兩個(gè)焦點(diǎn),若橢圓C上存在四個(gè)不同的點(diǎn)P,使得SKIPIF1<0,的面積為SKIPIF1<0,則正實(shí)數(shù)m的取值范圍為______.4.(2022·廣東肇慶·二模)已知點(diǎn)SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)A是橢圓上一點(diǎn),點(diǎn)О為坐標(biāo)原點(diǎn),若SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,則橢圓C的離心率為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·廣東汕頭·二模)已知橢圓C的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,直線AB過SKIPIF1<0與該橢圓交于A,B兩點(diǎn),當(dāng)SKIPIF1<0為正三角形時(shí),該橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·廣東中山·高三期末)已知橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,離心率為SKIPIF1<0,直線SKIPIF1<0被橢圓截得的弦長(zhǎng)為SKIPIF1<0SKIPIF1<0求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程SKIPIF1<0若SKIPIF1<0是橢圓SKIPIF1<0上一點(diǎn),SKIPIF1<0是坐標(biāo)原點(diǎn),過點(diǎn)SKIPIF1<0與直線SKIPIF1<0平行的直線與橢圓SKIPIF1<0的兩個(gè)交點(diǎn)為SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的最大值7.(2022·廣東·金山中學(xué)高三期末)在平面直角坐標(biāo)系xOy中,橢圓C:SKIPIF1<0的左,右頂點(diǎn)分別為A、B,點(diǎn)F是橢圓的右焦點(diǎn),SKIPIF1<0,SKIPIF1<0.(1)求橢圓C的方程;(2)不過點(diǎn)A的直線l交橢圓C于M、N兩點(diǎn),記直線l、AM、AN的斜率分別為k、SKIPIF1<0、SKIPIF1<0.若SKIPIF1<0,證明直線l過定點(diǎn),并求出定點(diǎn)的坐標(biāo).8.(2022·廣東潮州·高三期末)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,以原點(diǎn)O為圓心,橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線SKIPIF1<0相切.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知點(diǎn)A,B為動(dòng)直線y=k(x-2)(k≠0)與橢圓C的兩個(gè)交點(diǎn),問:在x軸上是否存在定點(diǎn)E,使得SKIPIF1<0為定值?若存在,試求出點(diǎn)E的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.9.(2022·廣東東莞·高三期末)已知點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0的左頂點(diǎn),點(diǎn)SKIPIF1<0為右焦點(diǎn),直線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,且SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓上異于點(diǎn)SKIPIF1<0的任意一點(diǎn),直線SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)證明:SKIPIF1<0.10.(2022·廣東深圳·高三期末)在平面直角坐標(biāo)系SKIPIF1<0中,點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,過點(diǎn)SKIPIF1<0的直線l與C交于M,N兩點(diǎn)(異于點(diǎn)A),記直線AM,AN的斜率分別為SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求C的方程;(2)證明:SKIPIF1<0為定值.11.(2021·廣東汕頭·高三期末)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,又點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)若動(dòng)直線SKIPIF1<0與橢圓SKIPIF1<0有且只有一個(gè)公共點(diǎn),過點(diǎn)SKIPIF1<0作直線SKIPIF1<0的垂線,垂足為SKIPIF1<0,試探究:SKIPIF1<0是否為定值,如果是,請(qǐng)求出該值;如果不是,請(qǐng)說明理由.12.(2022·廣東潮州·二模)設(shè)橢圓SKIPIF1<0為左右焦點(diǎn),SKIPIF1<0為短軸端點(diǎn),長(zhǎng)軸長(zhǎng)為4,焦距為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0.(Ⅰ)求橢圓SKIPIF1<0的方程(Ⅱ)設(shè)動(dòng)直線SKIPIF1<0橢圓SKIPIF1<0有且僅有一個(gè)公共點(diǎn)SKIPIF1<0,且與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)SKIPIF1<0,使得以SKIPIF1<0為直徑的圓恒過點(diǎn)SKIPIF1<0?若存在求出點(diǎn)SKIPIF1<0的坐標(biāo),若不存在.請(qǐng)說明理由.考點(diǎn)二:雙曲線【典例例題】例1.(2022·廣東珠海·高三期末)雙曲線SKIPIF1<0的右支上一點(diǎn)M關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)N,F(xiàn)為雙曲線的右焦點(diǎn),若SKIPIF1<0,SKIPIF1<0,則雙曲線C的離心率e為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例2.(2022·廣東佛山·高三期末)已知雙曲線C的漸近線方程為SKIPIF1<0,且過點(diǎn)SKIPIF1<0.(1)求C的方程;(2)設(shè)SKIPIF1<0,直線SKIPIF1<0不經(jīng)過P點(diǎn)且與C相交于A,B兩點(diǎn),若直線SKIPIF1<0與C交于另一點(diǎn)D,求證:直線SKIPIF1<0過定點(diǎn).【方法技巧與總結(jié)】1.雙曲線的定義:焦點(diǎn)三角形2.雙曲線的性質(zhì):離心率、雙曲線的漸近線【變式訓(xùn)練】1.(2022·廣東潮州·高三期末)SKIPIF1<0、SKIPIF1<0分別為雙曲線SKIPIF1<0的左、右焦點(diǎn),過SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0的左、右兩支曲線分別交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東汕尾·高三期末)已知雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,則該雙曲線的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.23.(2022·廣東清遠(yuǎn)·高三期末)(多選)已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,點(diǎn)P是雙曲線C上位于第一象限的點(diǎn),過點(diǎn)SKIPIF1<0作SKIPIF1<0的角平分線的垂線,垂足為A,若O為坐標(biāo)原點(diǎn),SKIPIF1<0,則(

)A.雙曲線C的漸近線方程為SKIPIF1<0B.雙曲線C的漸近線方程為SKIPIF1<0C.雙曲線C的離心率為SKIPIF1<0D.雙曲線C的離心率為SKIPIF1<04.(2022·廣東東莞·高三期末)已知SKIPIF1<0為雙曲線SKIPIF1<0:SKIPIF1<0的一個(gè)焦點(diǎn),則點(diǎn)SKIPIF1<0到雙曲線SKIPIF1<0的一條漸近線的距離為_______.5.(2022·廣東深圳·高三期末)在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0為雙曲線SKIPIF1<0的一個(gè)焦點(diǎn),以SKIPIF1<0為圓心的圓與SKIPIF1<0的兩條漸近線交于SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn),若四邊形SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的離心率為______.6.(2022·廣東中山·高三期末)已知點(diǎn)M為雙曲線C:SKIPIF1<0在第一象限上一點(diǎn),點(diǎn)F為雙曲線C的右焦點(diǎn),O為坐標(biāo)原點(diǎn),SKIPIF1<0,則雙曲線C的離心率為___________;若SKIPIF1<0分別交雙曲線C于P、Q兩點(diǎn),記直線QM與PQ的斜率分別為SKIPIF1<0,則SKIPIF1<0___________.29.(2022·廣東深圳·一模)已知雙曲線SKIPIF1<0:SKIPIF1<0經(jīng)過點(diǎn)ASKIPIF1<0,且點(diǎn)SKIPIF1<0到SKIPIF1<0的漸近線的距離為SKIPIF1<0.(1)求雙曲線C的方程;(2)過點(diǎn)SKIPIF1<0作斜率不為SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于M,N兩點(diǎn),直線SKIPIF1<0分別交直線AM,AN于點(diǎn)E,F(xiàn).試判斷以EF為直徑的圓是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo);反之,請(qǐng)說明理由.考點(diǎn)三:拋物線【典例例題】例1.(2022·廣東惠州·一模)若拋物線SKIPIF1<0(SKIPIF1<0)上一點(diǎn)P(2,SKIPIF1<0)到其焦點(diǎn)的距離為4,則拋物線的標(biāo)準(zhǔn)方程為(

)A.y2=2x B.y2=4x C.y2=6x D.y2=8x例2.(2022·廣東韶關(guān)·一模)已知在平面直角坐標(biāo)系中,有兩定點(diǎn)SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0.(1)求動(dòng)點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(2)若拋物線SKIPIF1<0與軌跡SKIPIF1<0按順時(shí)針方向依次交于四點(diǎn)SKIPIF1<0(點(diǎn)SKIPIF1<0在第一象限).①求證:直線SKIPIF1<0與直線SKIPIF1<0相交于SKIPIF1<0點(diǎn);②設(shè)SKIPIF1<0的面積為S,求S取最大值時(shí)的拋物線方程.【方法技巧與總結(jié)】1.拋物線的定義:到準(zhǔn)線與到定點(diǎn)距離相等.2.拋物線的性質(zhì):焦點(diǎn)弦長(zhǎng)【變式訓(xùn)練】1.(2022·廣東廣州·一模)設(shè)拋物線SKIPIF1<0的焦點(diǎn)為F,過點(diǎn)SKIPIF1<0的直線與E相交于A,B兩點(diǎn),與E的準(zhǔn)線相交于點(diǎn)C,點(diǎn)B在線段AC上,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的面積之比SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東廣東·一模)已知O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線SKIPIF1<0的焦點(diǎn),P為C上一點(diǎn),若SKIPIF1<0,則點(diǎn)F到直線PO的距離為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·廣東茂名·一模)(多選)已知拋物線C:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,P是拋物線SKIPIF1<0上第一象限的點(diǎn),SKIPIF1<0,直線PF與拋物線C的另一個(gè)交點(diǎn)為Q,則下列選項(xiàng)正確的是(

)A.點(diǎn)P的坐標(biāo)為(4,4)B.SKIPIF1<0C.SKIPIF1<0D.過點(diǎn)SKIPIF1<0作拋物線SKIPIF1<0的兩條切線SKIPIF1<0,其中SKIPIF1<0為切點(diǎn),則直線SKIPIF1<0的方程為:SKIPIF1<04.(2022·廣東·一模)(多選)已知拋物線SKIPIF1<0的焦點(diǎn)為F,拋物線C上存在n個(gè)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)滿足SKIPIF1<0,則下列結(jié)論中正確的是(

)A.SKIPIF1<0時(shí),SKIPIF1<0B.SKIPIF1<0時(shí),SKIPIF1<0的最小值為9C.SKIPIF1<0時(shí),SKIPIF1<0D.SKIPIF1<0時(shí),SKIPIF1<0的最小值為85.(2022·廣東湛江·一模)(多選)已知F是拋物線SKIPIF1<0的焦點(diǎn),過點(diǎn)F作兩條互相垂直的直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與C相交于A,B兩點(diǎn),SKIPIF1<0與C相交于E,D兩點(diǎn),M為A,B中點(diǎn),N為E,D中點(diǎn),直線l為拋物線C的準(zhǔn)線,則(

)A.點(diǎn)M到直線l的距離為定值 B.以SKIPIF1<0為直徑的圓與l相切C.SKIPIF1<0的最小值為32 D.當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<06.(2022·廣東深圳·一模)(多選)已知定圓A的半徑為1,圓心A到定直線l的距離為d,動(dòng)圓C與圓A和直線l都相切,圓心C的軌跡為如圖所示的兩條拋物線,記這兩拋物線的焦點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離分別為SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【鞏固練習(xí)】一、單選題1.橢圓SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,經(jīng)過點(diǎn)SKIPIF1<0的直線與橢圓SKIPIF1<0相交于A,SKIPIF1<0兩點(diǎn),若SKIPIF1<0的周長(zhǎng)為16,則橢圓SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.已知橢圓SKIPIF1<0的左右焦點(diǎn)分別SKIPIF1<0,左頂點(diǎn)為A,上頂點(diǎn)為B,點(diǎn)P為橢圓上一點(diǎn),且SKIPIF1<0,若SKIPIF1<0,則橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知SKIPIF1<0分別為橢圓SKIPIF1<0的左右焦點(diǎn),點(diǎn)P為橢圓上一點(diǎn),以SKIPIF1<0為圓心的圓與直線SKIPIF1<0恰好相切于點(diǎn)P,則SKIPIF1<0是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.明朝的一個(gè)葡萄紋橢圓盤如圖(1)所示,清朝的一個(gè)青花山水樓閣紋飾橢圓盤如圖(2)所示,北宋的一個(gè)汝窯橢圓盤如圖(3)所示,這三個(gè)橢圓盤的外輪廊均為橢圓.已知圖(1)?(2)?(3)中橢圓的長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比值分別SKIPIF1<0,設(shè)圖(1)?(2)?(3)中橢圓的離心率分別為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.設(shè)F為橢圓SKIPIF1<0的右焦點(diǎn),點(diǎn)SKIPIF1<0,點(diǎn)B在C上,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.設(shè)橢圓SKIPIF1<0長(zhǎng)軸的兩個(gè)頂點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓上不同于SKIPIF1<0、SKIPIF1<0的任一點(diǎn),若將SKIPIF1<0的三個(gè)內(nèi)角記作SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,且滿足SKIPIF1<0,則橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知直線SKIPIF1<0過拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn),且與該拋物線交于SKIPIF1<0兩點(diǎn).若線段SKIPIF1<0的長(zhǎng)為16,SKIPIF1<0的中點(diǎn)到SKIPIF1<0軸距離為6,則SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn))的面積是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.過拋物線SKIPIF1<0的焦點(diǎn)F作直線l,交拋物線于A,B兩點(diǎn),若SKIPIF1<0,則直線l的傾斜角等于(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.與p值有關(guān)二、多選題9.已知SKIPIF1<0為橢圓的焦點(diǎn),SKIPIF1<0,SKIPIF1<0分別為橢圓的兩個(gè)頂點(diǎn)(且SKIPIF1<0不是離SKIPIF1<0最近的那個(gè)頂點(diǎn)),若SKIPIF1<0,SKIPIF1<0,則橢圓的離心率可以為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.設(shè)圓錐曲線C的兩個(gè)焦點(diǎn)分別為SKIPIF1<0,若曲線C上存在點(diǎn)P滿足SKIPIF1<0,則曲線C的離心率可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.23.雙曲線SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P在C上.若SKIPIF1<0是直角三角形,則SKIPIF1<0的面積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.24.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上一點(diǎn),則(

)A.SKIPIF1<0的離心率為SKIPIF1<0 B.SKIPIF1<0的周長(zhǎng)為SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.已知拋物線C:SKIPIF1<0,過其準(zhǔn)線上的點(diǎn)T(1,-1)作C的兩條切線,切點(diǎn)分別為A、B,下列說法正確的是(

)A.p=1 B.拋物線的焦點(diǎn)為F(0,1)C.SKIPIF1<0 D.直線AB的斜率為SKIPIF1<0三、填空題1.與雙曲線SKIPIF1<0有相同的焦點(diǎn),且短半軸長(zhǎng)為SKIPIF1<0的橢圓方程是________.2.已知橢圓SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0.過SKIPIF1<0且傾斜角為60°的直線交橢圓的上半部分于點(diǎn)SKIPIF1<0,以SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn))為鄰邊作平行四邊形SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論