版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省博興縣2025屆高考全國統(tǒng)考預測密卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《算數(shù)書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學典籍.其中記載有求“囷蓋”的術:“置如其周,令相承也.又以高乘之,三十六成一”.該術相當于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當于將圓錐體積公式中的圓周率近似取為()A. B. C. D.2.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.3.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.24.已知,且,則()A. B. C. D.5.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.86.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.37.已知,則的值等于()A. B. C. D.8.若sin(α+3π2A.-12 B.-139.若復數(shù)(為虛數(shù)單位)的實部與虛部相等,則的值為()A. B. C. D.10.設復數(shù)滿足,則()A. B. C. D.11.下列結(jié)論中正確的個數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個不同的點到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.012.已知向量,,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.14.在中,內(nèi)角的對邊分別是,若,,則____.15.已知函數(shù)有且只有一個零點,則實數(shù)的取值范圍為__________.16.已知平面向量,,且,則向量與的夾角的大小為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,且.(1)當時,求函數(shù)的減區(qū)間;(2)求證:方程有兩個不相等的實數(shù)根;(3)若方程的兩個實數(shù)根是,試比較,與的大小,并說明理由.18.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.19.(12分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.20.(12分)在最新公布的湖南新高考方案中,“”模式要求學生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉(zhuǎn)換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設置具體的選修科目要求.雙超中學高一年級有學生1200人,現(xiàn)從中隨機抽取40人進行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現(xiàn)有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學高一新生中隨機抽取3人,設具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.21.(12分)在銳角三角形中,角的對邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.22.(10分)已知首項為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學問題考查圓錐體積計算的實際應用,考查學生的運算求解能力、創(chuàng)新能力.2、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.3、C【解析】
由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算的能力,屬于中檔題.4、B【解析】分析:首先利用同角三角函數(shù)關系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關同角三角函數(shù)關系式以及倍角公式的應用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應用同角三角函數(shù)關系式求解,也可以結(jié)合三角函數(shù)的定義式求解.5、A【解析】
先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.6、D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.7、A【解析】
由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數(shù)中的誘導公式,屬于簡單題8、B【解析】
由三角函數(shù)的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數(shù)的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.9、C【解析】
利用復數(shù)的除法,以及復數(shù)的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C【點睛】本題主要考查復數(shù)的除法運算,復數(shù)的概念運用.10、D【解析】
根據(jù)復數(shù)運算,即可容易求得結(jié)果.【詳解】.故選:D.【點睛】本題考查復數(shù)的四則運算,屬基礎題.11、B【解析】
根據(jù)等差數(shù)列的定義,線面關系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項公式為,可得為一次項系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個不同的點到平面的距離相等,則與可以相交或平行,故②錯誤;③在中,,而余弦函數(shù)在區(qū)間上單調(diào)遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯誤;④若,則,所以,當且僅當時取等號,故④正確;綜上可得正確的有①④共2個;故選:B【點睛】本題考查命題的真假判斷,主要是正弦定理的運用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質(zhì),考查運算能力和推理能力,屬于中檔題.12、A【解析】
根據(jù)向量坐標運算求得,由平行關系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點睛】本題考查根據(jù)向量平行關系求解參數(shù)值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求角,再用余弦定理找到邊的關系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點睛】考查正余弦定理、基本不等式的應用以及三條線段構(gòu)成三角形的條件;基礎題.14、【解析】
由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內(nèi)角,解題關鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.15、【解析】
當時,轉(zhuǎn)化條件得有唯一實數(shù)根,令,通過求導得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當時,,故不是函數(shù)的零點;當時,即,令,,,當時,;當時,,的單調(diào)減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實數(shù)根,則.故答案為:.【點睛】本題考查了導數(shù)的應用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.16、【解析】
由,解得,進而求出,即可得出結(jié)果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎知識;考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析(3)【解析】
試題分析:(1)當時,,由得減區(qū)間;(2)因為,所以,因為所以,方程有兩個不相等的實數(shù)根;(3)因為,,所以試題解析:(1)當時,,由得減區(qū)間;(2)法1:,,,所以,方程有兩個不相等的實數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個不相等的實數(shù)根;(3)因為,,又在和增,在減,所以.考點:利用導數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關系18、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),,,∴函數(shù)在閉區(qū)間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數(shù)的周期性和單調(diào)性.19、(1)見證明;(2)【解析】
(1)取的中點,連接,要證平面平面,轉(zhuǎn)證平面,即證,即可;(2)以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出平面與平面的法向量,代入公式,即可得到結(jié)果.【詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,,且因為,所以,所以,又因為,平面,平面,所以平面.又因為平面,所以平面平面.(2)因為,為等邊三角形,所以,又因為,所以,,在中,由正弦定理,得:,所以.以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,則,,,,,設平面的法向量為,則,即,令,則平面的一個法向量為,依題意,平面的一個法向量所以故二面角的余弦值為.【點睛】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉(zhuǎn)化為向量關系;(5)根據(jù)定理結(jié)論求出相應的角和距離.20、(1)不需調(diào)整(2)列聯(lián)表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(3)詳見解析【解析】
(1)可估計高一年級選修相應科目的人數(shù)分別為120,2,推理得對應開設選修班的數(shù)目分別為15,1.推理知生物科目需要減少4名教師,化學科目不需要調(diào)整.(2)根據(jù)列聯(lián)表計算觀測值,根據(jù)臨界值表可得結(jié)論.(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計概率,則,根據(jù)二項分布概率公式可得分布列和數(shù)學期望.【詳解】(1)經(jīng)統(tǒng)計可知,樣本40人中,選修化學、生物的人數(shù)分別為24,11,則可估計高一年級選修相應科目的人數(shù)分別為120,2.根據(jù)每個選修班最多編排50人,且盡量滿額編班,得對應開設選修班的數(shù)目分別為15,1.現(xiàn)有化學、生物科目教師每科各8人,根據(jù)每位教師執(zhí)教2個選修班,當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的一位教師執(zhí)教一個班的條件,知生物科目需要減少4名教師,化學科目不需要調(diào)整.(2)根據(jù)表格中的數(shù)據(jù)進行統(tǒng)計后,制作列聯(lián)表如下:選物理不選物理合計選化學19524不選化學61016合計251540則,有的把握判斷學生”選擇化學科目”與“選擇物理科目”有關.(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國嬰兒護理品市場發(fā)展狀況及投資前景規(guī)劃研究報告
- 2024-2030年中國增效苯甘孢霉素項目申請報告
- 2024-2030年中國團膳行業(yè)經(jīng)營模式及投資規(guī)劃研究報告
- 2024年體育場館墻面涂裝勞務分包合同2篇
- 2024年滁州商業(yè)場地租賃協(xié)議模板例本版B版
- 梅河口康美職業(yè)技術學院《紡織測試技術》2023-2024學年第一學期期末試卷
- 茂名職業(yè)技術學院《現(xiàn)代模具設計》2023-2024學年第一學期期末試卷
- 2021-2022學年河南省原陽縣第三高級中學高一上學期期中考試數(shù)學試卷
- 2024年汽車制造專用鋁材采購合同范本及詳細條款3篇
- 洛陽師范學院《材料科學基礎B(二)》2023-2024學年第一學期期末試卷
- 股權合作協(xié)議范本三篇
- 2023年四川省眉山市公開招聘警務輔助人員(輔警)筆試專項訓練題試卷(2)含答案
- 《田間試驗》課件
- 【MOOC】概率論與數(shù)理統(tǒng)計-北京理工大學 中國大學慕課MOOC答案
- 人生課件路遙
- 2024年新疆中考化學真題【附答案】
- CFA固定收益證券知到智慧樹期末考試答案題庫2024年秋首都經(jīng)濟貿(mào)易大學
- 高齡心房顫動患者抗凝治療中國專家共識(2024)解讀
- 光伏項目達標投產(chǎn)實施細則-施工
- 《技術經(jīng)濟學》練習題集
- 2023年黑龍江省齊齊哈爾市龍沙區(qū)煙草專賣局公務員考試《行政職業(yè)能力測驗》歷年真題及詳解
評論
0/150
提交評論