![新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專(zhuān)項(xiàng)重難點(diǎn)突破專(zhuān)題23 圓錐曲線與內(nèi)心問(wèn)題(解析版)_第1頁(yè)](http://file4.renrendoc.com/view9/M02/29/1C/wKhkGWdOZNKAXL4AAAG15dmphJA273.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專(zhuān)項(xiàng)重難點(diǎn)突破專(zhuān)題23 圓錐曲線與內(nèi)心問(wèn)題(解析版)_第2頁(yè)](http://file4.renrendoc.com/view9/M02/29/1C/wKhkGWdOZNKAXL4AAAG15dmphJA2732.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專(zhuān)項(xiàng)重難點(diǎn)突破專(zhuān)題23 圓錐曲線與內(nèi)心問(wèn)題(解析版)_第3頁(yè)](http://file4.renrendoc.com/view9/M02/29/1C/wKhkGWdOZNKAXL4AAAG15dmphJA2733.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專(zhuān)項(xiàng)重難點(diǎn)突破專(zhuān)題23 圓錐曲線與內(nèi)心問(wèn)題(解析版)_第4頁(yè)](http://file4.renrendoc.com/view9/M02/29/1C/wKhkGWdOZNKAXL4AAAG15dmphJA2734.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專(zhuān)項(xiàng)重難點(diǎn)突破專(zhuān)題23 圓錐曲線與內(nèi)心問(wèn)題(解析版)_第5頁(yè)](http://file4.renrendoc.com/view9/M02/29/1C/wKhkGWdOZNKAXL4AAAG15dmphJA2735.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)題23圓錐曲線與內(nèi)心問(wèn)題限時(shí):120分鐘滿(mǎn)分:150分一、單選題:本大題共8小題,每個(gè)小題5分,共40分.在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知點(diǎn)SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn),點(diǎn)P是橢圓E上的一點(diǎn),若SKIPIF1<0的內(nèi)心是G,且SKIPIF1<0,則橢圓E的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)點(diǎn)G到SKIPIF1<0各邊的距離為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,
即SKIPIF1<0,由橢圓定義知SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0,所以橢圓E的離心率SKIPIF1<0.故選:B2.已知SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的左右焦點(diǎn),點(diǎn)SKIPIF1<0為SKIPIF1<0上一動(dòng)點(diǎn),且SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0的內(nèi)心,則SKIPIF1<0面積的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由橢圓的方程可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)內(nèi)切圓的半徑為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:C.3.若橢圓SKIPIF1<0的離心率為SKIPIF1<0,兩個(gè)焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上異于頂點(diǎn)的任意一點(diǎn),點(diǎn)SKIPIF1<0是SKIPIF1<0的內(nèi)心,連接SKIPIF1<0并延長(zhǎng)交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.4 D.SKIPIF1<0【解析】
如圖,連接SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0到SKIPIF1<0軸距離為SKIPIF1<0,SKIPIF1<0到SKIPIF1<0軸距離為SKIPIF1<0,則SKIPIF1<0設(shè)△SKIPIF1<0內(nèi)切圓的半徑為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,因?yàn)闄E圓SKIPIF1<0的離心率為SKIPIF1<0,∴SKIPIF1<0,故選:A.4.已知SKIPIF1<0,SKIPIF1<0分別為雙曲線SKIPIF1<0的左?右焦點(diǎn),且SKIPIF1<0,點(diǎn)P為雙曲線右支上一點(diǎn),M為SKIPIF1<0的內(nèi)心,若SKIPIF1<0成立,則λ的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以離心率SKIPIF1<0,設(shè)SKIPIF1<0的內(nèi)切圓半徑為SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B.5.已知雙曲線SKIPIF1<0(SKIPIF1<0)的左?右焦點(diǎn)分別為SKIPIF1<0為雙曲線上的一點(diǎn),SKIPIF1<0為SKIPIF1<0的內(nèi)心,且SKIPIF1<0,則SKIPIF1<0的離心率為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】如下圖示,延長(zhǎng)SKIPIF1<0到SKIPIF1<0且SKIPIF1<0,延長(zhǎng)SKIPIF1<0到SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0是△SKIPIF1<0的重心,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0是SKIPIF1<0的內(nèi)心,則SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0.故選:D6.已知雙曲線SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,離心率為2,焦點(diǎn)到漸近線的距離為SKIPIF1<0.過(guò)SKIPIF1<0作直線SKIPIF1<0交雙曲線SKIPIF1<0的右支于SKIPIF1<0兩點(diǎn),若SKIPIF1<0分別為SKIPIF1<0與SKIPIF1<0的內(nèi)心,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由題意,在SKIPIF1<0中,根據(jù)焦點(diǎn)到漸近線的距可得SKIPIF1<0,離心率為2,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0∴雙曲線的方程為SKIPIF1<0.
記SKIPIF1<0的內(nèi)切圓在邊SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上的切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0橫坐標(biāo)相等SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,記SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,于是SKIPIF1<0,得SKIPIF1<0,同理內(nèi)心SKIPIF1<0的橫坐標(biāo)也為SKIPIF1<0,故SKIPIF1<0SKIPIF1<0軸.設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0(Q為坐標(biāo)原點(diǎn)),在SKIPIF1<0中,SKIPIF1<0,由于直線SKIPIF1<0與SKIPIF1<0的右支交于兩點(diǎn),且SKIPIF1<0的一條漸近線的斜率為SKIPIF1<0,傾斜角為SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0的范圍是SKIPIF1<0.故選:D.7.設(shè)SKIPIF1<0為橢圓SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0的焦點(diǎn),SKIPIF1<0為SKIPIF1<0的內(nèi)心,則直線SKIPIF1<0和直線SKIPIF1<0的斜率之積()A.是定值 B.非定值,但存在最大值C.非定值,但存在最小值 D.非定值,且不存在最值【解析】連接SKIPIF1<0并延長(zhǎng)交SKIPIF1<0軸于SKIPIF1<0,則由內(nèi)角平分線定理可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0和直線SKIPIF1<0的斜率之積是定值.故選:A.8.已知雙曲線SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,過(guò)右焦點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線的右支交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0的內(nèi)心分別為SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0面積之和的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由雙曲線方程得:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0內(nèi)切圓與三邊相切于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0;同理可知:SKIPIF1<0內(nèi)切圓與SKIPIF1<0軸相切于點(diǎn)SKIPIF1<0;SKIPIF1<0分別為SKIPIF1<0的角平分線,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0∽SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0內(nèi)切圓半徑分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0雙曲線的漸近線斜率SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的傾斜角SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0,SKIPIF1<0.故選:A.二、多選題:本大題共4小題,每個(gè)小題5分,共20分.在每小題給出的選項(xiàng)中,只有一項(xiàng)或者多項(xiàng)是符合題目要求的.9.已知SKIPIF1<0,SKIPIF1<0分別為雙曲線SKIPIF1<0的左、右焦點(diǎn),M為C的右頂點(diǎn),過(guò)SKIPIF1<0的直線與C的右支交于A,B兩點(diǎn)(其中點(diǎn)A在第一象限),設(shè)點(diǎn)P,Q分別為SKIPIF1<0,SKIPIF1<0的內(nèi)心,R,r分別為SKIPIF1<0,SKIPIF1<0內(nèi)切圓的半徑,則(
)A.點(diǎn)M在直線PQ上 B.點(diǎn)M在直線PQ的左側(cè)C.SKIPIF1<0 D.SKIPIF1<0【解析】先證明一個(gè)結(jié)論:焦點(diǎn)在x軸上的雙曲線焦點(diǎn)三角形的內(nèi)切圓圓心橫坐標(biāo)為SKIPIF1<0.過(guò)SKIPIF1<0的直線與C的右支交于A,B兩點(diǎn),設(shè)點(diǎn)P為SKIPIF1<0的內(nèi)心,設(shè)圓P與SKIPIF1<0的切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,解之得SKIPIF1<0則切點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.切點(diǎn)SKIPIF1<0與雙曲線C的右頂點(diǎn)M重合,則圓P與x軸的切點(diǎn)為雙曲線C的右頂點(diǎn)M,同理可得圓Q與x軸的切點(diǎn)為雙曲線C的右頂點(diǎn)M.則直線SKIPIF1<0的方程為SKIPIF1<0,雙曲線C的右頂點(diǎn)M的坐標(biāo)為SKIPIF1<0,則點(diǎn)M在直線PQ上.則選項(xiàng)A判斷正確;選項(xiàng)B判斷錯(cuò)誤;選項(xiàng)C:SKIPIF1<0.判斷正確;選項(xiàng)D:由直線SKIPIF1<0的方程為SKIPIF1<0,可得SKIPIF1<0.判斷正確.故選:ACD10.已知橢圓:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,右頂點(diǎn)為A,點(diǎn)M為橢圓SKIPIF1<0上一點(diǎn),點(diǎn)I是SKIPIF1<0的內(nèi)心,延長(zhǎng)MI交線段SKIPIF1<0于N,拋物線SKIPIF1<0(其中c為橢圓下的半焦距)與橢圓SKIPIF1<0交于B,C兩點(diǎn),若四邊形SKIPIF1<0是菱形,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.橢圓SKIPIF1<0的離心率是SKIPIF1<0C.SKIPIF1<0的最小值為SKIPIF1<0 D.SKIPIF1<0的值為SKIPIF1<0【解析】對(duì)于A,因?yàn)闄E圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,右頂點(diǎn)為A,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)閽佄锞€SKIPIF1<0(其中c為橢圓下的半焦距)與橢圓SKIPIF1<0交于B,C兩點(diǎn),所以由橢圓與拋物線的對(duì)稱(chēng)性可得,SKIPIF1<0兩點(diǎn)關(guān)于SKIPIF1<0軸對(duì)稱(chēng),不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0是菱形,所以SKIPIF1<0的中點(diǎn)是SKIPIF1<0的中點(diǎn),所以由中點(diǎn)坐標(biāo)公式得SKIPIF1<0,則SKIPIF1<0,將SKIPIF1<0代入拋物線方程SKIPIF1<0得,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故A正確;對(duì)于B,由選項(xiàng)A得SKIPIF1<0,再代入橢圓方程得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故B錯(cuò)誤;對(duì)于C,由選項(xiàng)B得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0,故C正確;對(duì)于D,連接SKIPIF1<0和SKIPIF1<0,如圖,因?yàn)镾KIPIF1<0的內(nèi)心為SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0的平分線,則有SKIPIF1<0,同理:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:ACD.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題的關(guān)鍵點(diǎn)是利用橢圓與拋物線的對(duì)稱(chēng)性,可設(shè)SKIPIF1<0的坐標(biāo),再由菱形的性質(zhì)與中點(diǎn)坐標(biāo)公式推得SKIPIF1<0,從而求得SKIPIF1<0的值,由此得解.11.已知雙曲線SKIPIF1<0的左、右頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0的右支上一點(diǎn),且三角形SKIPIF1<0為正三角形(SKIPIF1<0為坐標(biāo)原點(diǎn)),記SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0為SKIPIF1<0的內(nèi)心,記SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的面積分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的是(
)A.SKIPIF1<0 B.雙曲線SKIPIF1<0的離心率為SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】因?yàn)镾KIPIF1<0為正三角形,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,故A正確將SKIPIF1<0點(diǎn)坐標(biāo)代入雙曲線方程可得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0,解之得:SKIPIF1<0或SKIPIF1<0(舍),所以SKIPIF1<0,所以SKIPIF1<0,故B正確,SKIPIF1<0,故C錯(cuò)誤,SKIPIF1<0,設(shè)SKIPIF1<0的內(nèi)切圓半徑為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故D正確故選:ABD12.已知SKIPIF1<0,SKIPIF1<0分別是雙曲線SKIPIF1<0的左、右焦點(diǎn),過(guò)SKIPIF1<0且傾斜角為SKIPIF1<0的直線交雙曲線C的右支于A,B兩點(diǎn),I為SKIPIF1<0的內(nèi)心,O為坐標(biāo)原點(diǎn),則下列結(jié)論成立的是(
)A.若C的離心率SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0B.若SKIPIF1<0且SKIPIF1<0,則C的離心率SKIPIF1<0C.若C的離心率SKIPIF1<0,則SKIPIF1<0D.過(guò)SKIPIF1<0作SKIPIF1<0,垂足為P,若I的橫坐標(biāo)為m,則SKIPIF1<0【解析】對(duì)于選項(xiàng)A,當(dāng)SKIPIF1<0時(shí),雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,其傾斜角分別為SKIPIF1<0,SKIPIF1<0,因?yàn)檫^(guò)SKIPIF1<0且傾斜角為SKIPIF1<0的直線與雙曲線的右支交于A,B兩點(diǎn),所以SKIPIF1<0的取值范圍是SKIPIF1<0,故A錯(cuò)誤.對(duì)于選項(xiàng)B,由雙曲線的定義可知SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,在SKIPIF1<0中,由余弦定理得SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,故B正確.對(duì)于選項(xiàng)C,因?yàn)镃的離心率SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0的內(nèi)切圓I的半徑為r,則SKIPIF1<0SKIPIF1<0,故C正確.對(duì)于選項(xiàng)D,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,AP為SKIPIF1<0的平分線,所以SKIPIF1<0為等腰三角形,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,OP為中位線,所以SKIPIF1<0.設(shè)SKIPIF1<0的內(nèi)切圓I與SKIPIF1<0,SKIPIF1<0,SKIPIF1<0相切的切點(diǎn)分別為D,N,M,則SKIPIF1<0,又SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,故D正確.故選:BCD.三、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卡中的橫線上.13.已知雙曲線的中心在原點(diǎn),右頂點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線的右支上,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為1.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的內(nèi)心恰好是點(diǎn)SKIPIF1<0,則雙曲線的方程.【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由于點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以直線SKIPIF1<0的斜率SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0為SKIPIF1<0的內(nèi)心,故SKIPIF1<0是雙曲線上關(guān)于SKIPIF1<0軸對(duì)稱(chēng)的兩點(diǎn),所以SKIPIF1<0軸,不妨設(shè)直線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,則SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0兩點(diǎn)的橫坐標(biāo)均為SKIPIF1<0,把SKIPIF1<0代入直線SKIPIF1<0的方程:SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0兩點(diǎn)的坐標(biāo)分別為:SKIPIF1<0,設(shè)雙曲線方程為:SKIPIF1<0,把點(diǎn)SKIPIF1<0的坐標(biāo)代入方程得到SKIPIF1<0,所以雙曲線方程為:SKIPIF1<0.14.已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,P是C在第一象限上的一點(diǎn),且直線SKIPIF1<0的斜率為SKIPIF1<0,點(diǎn)B為SKIPIF1<0的內(nèi)心,直線PB交x軸于點(diǎn)A,且SKIPIF1<0,則雙曲線C的漸近線方程為.【解析】如圖所示,設(shè)內(nèi)切圓SKIPIF1<0與SKIPIF1<0的三邊分別相切于SKIPIF1<0三點(diǎn),過(guò)P作SKIPIF1<0軸于M點(diǎn),因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,又由雙曲線定義得SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0點(diǎn)橫坐標(biāo)為SKIPIF1<0,因?yàn)橹本€SKIPIF1<0的斜率為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故直線SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由余弦定理得SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,或SKIPIF1<0(舍去),所以SKIPIF1<0,故雙曲線C的漸近線方程為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.15.已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,M是雙曲線C右支上一點(diǎn),記SKIPIF1<0的重心為G,內(nèi)心為I.若SKIPIF1<0,則雙曲線C的離心率為.【解析】如圖,連接MG,MI并延長(zhǎng),與SKIPIF1<0分別交于點(diǎn)O,D,設(shè)雙曲線C的焦距為2c,由題意,得SKIPIF1<0,因?yàn)镾KIPIF1<0,且G為重心,則SKIPIF1<0,所以SKIPIF1<0,因?yàn)镮為SKIPIF1<0的內(nèi)心,所以MD為SKIPIF1<0的平分線,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0的內(nèi)切圓半徑為r,則M到x軸的距離為3r,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以雙曲線C的離心率SKIPIF1<0.16.已知SKIPIF1<0,SKIPIF1<0分別為橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)SKIPIF1<0在橢圓上,點(diǎn)SKIPIF1<0為SKIPIF1<0的內(nèi)心,若SKIPIF1<0,則SKIPIF1<0的面積為.【解析】延長(zhǎng)SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因此,SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0內(nèi)切圓的半徑SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,(橢圓的定義的應(yīng)用)由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,(角平分線定理:三角形一個(gè)角的平分線與其對(duì)邊所成的兩條線段與這個(gè)角的兩邊對(duì)應(yīng)成比例)因此SKIPIF1<0,SKIPIF1<0,由余弦定理得SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的面積為SKIPIF1<0.四、解答題:本大題共6小題,共70分.解答應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟.17.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,其離心率是SKIPIF1<0,SKIPIF1<0為橢圓上異于長(zhǎng)軸端點(diǎn)的一點(diǎn),SKIPIF1<0,設(shè)SKIPIF1<0的內(nèi)心為SKIPIF1<0,且SKIPIF1<0.(Ⅰ)求橢圓SKIPIF1<0的方程;(Ⅱ)已知直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,若橢圓SKIPIF1<0上存在兩點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng),求直線SKIPIF1<0斜率SKIPIF1<0的取值范圍.【解析】(Ⅰ)因?yàn)镾KIPIF1<0的內(nèi)心為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即橢圓SKIPIF1<0的方程為SKIPIF1<0.(Ⅱ)(ⅰ)由題意當(dāng)SKIPIF1<0時(shí),顯然合題意;(ⅱ)當(dāng)SKIPIF1<0時(shí),設(shè)直線SKIPIF1<0,SKIPIF1<0中點(diǎn)是SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0
①由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在直線SKIPIF1<0上,即SKIPIF1<0,所以SKIPIF1<0
②①②得SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0.綜合(ⅰ)(ⅱ)即直線SKIPIF1<0斜率SKIPIF1<0的取值范圍是SKIPIF1<0.18.已知橢圓C:SKIPIF1<0,直線SKIPIF1<0與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切,SKIPIF1<0為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),SKIPIF1<0的重心為G,內(nèi)心為I,且SKIPIF1<0.(1)求橢圓C的方程;(2)若直線SKIPIF1<0與橢圓C交于不同的兩點(diǎn)A、B,且線段AB的垂直平分線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,求實(shí)數(shù)k的取值范圍.【解析】(1)設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則由SKIPIF1<0,可得SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0,∵直線ySKIPIF1<0與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切∴SKIPIF1<0,∴SKIPIF1<0,∴橢圓的方程為SKIPIF1<0;(2)設(shè)SKIPIF1<0,則直線方程代入橢圓方程可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴線段AB的中點(diǎn)R的坐標(biāo)為SKIPIF1<0,∵線段AB的垂直平分線SKIPIF1<0的方程為SKIPIF1<0,R在直線SKIPIF1<0上,∴SKIPIF1<0,∴mSKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0.19.已知SKIPIF1<0是圓SKIPIF1<0:SKIPIF1<0上的動(dòng)點(diǎn),點(diǎn)SKIPIF1<0,直線SKIPIF1<0與圓SKIPIF1<0的另一個(gè)交點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0.(1)求曲線SKIPIF1<0的方程;(2)若過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0與曲線SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且SKIPIF1<0,SKIPIF1<0都在SKIPIF1<0軸上方,問(wèn):在SKIPIF1<0軸上是否存在定點(diǎn)SKIPIF1<0,使得SKIPIF1<0的內(nèi)心在一條定直線上?請(qǐng)你給出結(jié)論并證明.【解析】(1)圓SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0在以SKIPIF1<0,SKIPIF1<0為焦點(diǎn),SKIPIF1<0為實(shí)軸長(zhǎng)的雙曲線上,設(shè)雙曲線的方程為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0又SKIPIF1<0不可能在SKIPIF1<0軸上,所以曲線SKIPIF1<0的方程為SKIPIF1<0.
(2)在SKIPIF1<0軸上存在定點(diǎn)SKIPIF1<0,使得SKIPIF1<0的內(nèi)心在一條定直線上.證明如下:由條件可設(shè)SKIPIF1<0:SKIPIF1<0.代入SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0SKIPIF1<0又SKIPIF1<0,SKIPIF1<0都在SKIPIF1<0軸上方,所以SKIPIF1<0的平分線為定直線SKIPIF1<0,所以在SKIPIF1<0軸上存在定點(diǎn)SKIPIF1<0,使得SKIPIF1<0的內(nèi)心在定直線SKIPIF1<0上.20.已知橢圓SKIPIF1<0,直線SKIPIF1<0與以原點(diǎn)為圓心,以橢圓SKIPIF1<0的短半軸為半徑的圓相切,SKIPIF1<0為其左右焦點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上的任意一點(diǎn),SKIPIF1<0的重心為SKIPIF1<0,內(nèi)心為SKIPIF1<0,且SKIPIF1<0,(Ⅰ)求橢圓SKIPIF1<0的方程;(Ⅱ)已知SKIPIF1<0為橢圓SKIPIF1<0上的左頂點(diǎn),直線SKIPIF1<0過(guò)右焦點(diǎn)SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0的斜率SKIPIF1<0滿(mǎn)足SKIPIF1<0,求直線SKIPIF1<0的方程.【解析】(Ⅰ)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故SKIPIF1<0.又直線SKIPIF1<0與以原點(diǎn)為圓心,以橢圓SKIPIF1<0的短半軸為半徑的圓相切,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.(Ⅱ)若直線SKIPIF1<0斜率不存在,顯然SKIPIF1<0不合題意;則直線SKIPIF1<0的斜率存在.設(shè)直線SKIPIF1<0為SKIPIF1<0,直線SKIPIF1<0和橢圓交于SKIPIF1<0,SKIPIF1<0.將SKIPIF1<0代入SKIPIF1<0中得到:SKIPIF1<0,依題意:SKIPIF1<0,由韋達(dá)定理可知:SKIPIF1<0又SKIPIF1<0SKIPIF1<0而SKIPIF1<0SKIPIF1<0從而SKIPIF1<0求得SKIPIF1<0,故所求直線SKIPIF1<0的方程為:SKIPIF1<0,即SKIPIF1<021.已知點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),SKIPIF1<0是SKIPIF1<0右支上一點(diǎn),SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的內(nèi)心,且滿(mǎn)足SKIPIF1<0.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)過(guò)SKIPIF1<0的直線SKIPIF1<0與雙曲線的右支交于SKIPIF1<0兩點(diǎn),與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,滿(mǎn)足SKIPIF1<0(其中SKIPIF1<0),求SKIPIF1<0的取值范圍.【解析】(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年公司年會(huì)老板致辭范文(17篇)
- 涉外購(gòu)貨合同(3篇)
- 設(shè)計(jì)車(chē)輛出入口流量與停車(chē)位布局方案
- 2024-2025學(xué)年四川省九校高二上學(xué)期12月聯(lián)考?xì)v史試卷
- 2025年協(xié)作資金合同解析
- 2025年中小型企業(yè)品牌共建合作協(xié)議書(shū)
- 2025年專(zhuān)利權(quán)許可與技術(shù)轉(zhuǎn)移合同分析
- 2025年住宅裝飾施工合同
- 2025年企業(yè)流動(dòng)資金貸款償還協(xié)議合同
- 2025年城市規(guī)劃策劃合作發(fā)展協(xié)議
- 2024新版《藥品管理法》培訓(xùn)課件
- 浙江省杭州市2024年中考英語(yǔ)真題(含答案)
- 《陸上風(fēng)電場(chǎng)工程設(shè)計(jì)概算編制規(guī)定及費(fèi)用標(biāo)準(zhǔn)》(NB-T 31011-2019)
- 人事測(cè)評(píng)理論與方法-課件
- 最新卷宗的整理、裝訂(全)課件
- 人教版部編道德與法治三年級(jí)下冊(cè)全冊(cè)全套課件
- 信訪事項(xiàng)受理、辦理、復(fù)查、復(fù)核、聽(tīng)證程序課件
- 【北京】施工現(xiàn)場(chǎng)安全生產(chǎn)標(biāo)準(zhǔn)化管理圖集
- 部編版小學(xué)道德與法治五年級(jí)下冊(cè)教案(全冊(cè))
- XXXXX醫(yī)院腎友會(huì)活動(dòng)方案
- 第二講共振理論、有機(jī)酸堿理論
評(píng)論
0/150
提交評(píng)論