版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省麗水四校2025屆高三壓軸卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.42.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.03.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.4.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.5.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.6.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.7.已知等差數(shù)列的前n項和為,,則A.3 B.4 C.5 D.68.設(shè)集合(為實數(shù)集),,,則()A. B. C. D.9.我國古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.10010.已知角的終邊與單位圓交于點,則等于()A. B. C. D.11.已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.12.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,則與的夾角為.14.若x,y滿足,則的最小值為________.15.已知一組數(shù)據(jù),1,0,,的方差為10,則________16.已知等邊三角形的邊長為1.,點、分別為線段、上的動點,則取值的集合為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)拋物線的焦點為,準(zhǔn)線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點.(1)求的值及該圓的方程;(2)設(shè)為上任意一點,過點作的切線,切點為,證明:.18.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.19.(12分)(江蘇省徐州市高三第一次質(zhì)量檢測數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知平行于軸的動直線交拋物線:于點,點為的焦點.圓心不在軸上的圓與直線,,軸都相切,設(shè)的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為,直線,分別與軸相交于點,.當(dāng)線段的長度最小時,求的值.20.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標(biāo).21.(12分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數(shù)列的通項公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項和為,求大于的最小的正整數(shù)的值.22.(10分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準(zhǔn)線,M為垂足,則由拋物線的定義可得.所以,當(dāng)Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.2、D【解析】分析:因為題設(shè)中給出了的值,要求的值,故應(yīng)考慮兩者之間滿足的關(guān)系.詳解:由題設(shè)有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系.3、A【解析】
若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據(jù)這個結(jié)論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【點睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時要注意挖掘隱含條件.4、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.5、A【解析】
首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎(chǔ)題.6、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題7、C【解析】
方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.8、A【解析】
根據(jù)集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎(chǔ)題.9、B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.10、B【解析】
先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數(shù)的定義和二倍角公式,是基礎(chǔ)題.11、A【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.12、D【解析】
根據(jù)框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)已知條件,去括號得:,14、5【解析】
先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得?!驹斀狻孔鞒霾坏仁浇M表示的平面區(qū)域,如圖,令,則,作出直線,平移直線,由圖可得,當(dāng)直線經(jīng)過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數(shù)的線性規(guī)劃問題,是基礎(chǔ)題。15、7或【解析】
依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.【點睛】本題主要考查方差公式的應(yīng)用.16、【解析】
根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點的坐標(biāo),依題意求出,,,的表達式,再進行數(shù)量積的運算,最后求和即可得出結(jié)果.【詳解】解:以的中點為坐標(biāo)原點,所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點的坐標(biāo)為,則,,,所以故答案為:【點睛】本題考查平面向量的坐標(biāo)表示和線性運算,以及平面向量基本定理和數(shù)量積的運算,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),圓的方程為:.(2)答案見解析【解析】
(1)根據(jù)題意,可知點的坐標(biāo)為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設(shè)的方程為,與拋物線聯(lián)立方程組,根據(jù),求得,化簡解得,進而求得點的坐標(biāo)為,分別求出,,利用向量的數(shù)量積為0,即可證出.【詳解】解:(1)易知點的坐標(biāo)為,所以,解得.又圓的圓心為,所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設(shè)的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點的坐標(biāo)為.所以,,.故.【點睛】本題考查拋物線的標(biāo)準(zhǔn)方程和圓的方程,考查直線和拋物線的位置關(guān)系,利用聯(lián)立方程組、求交點坐標(biāo)以及向量的數(shù)量積,考查解題能力和計算能力.18、(1)(2)【解析】
(1)先證得,設(shè)與交于點,在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)由題意,,設(shè)與交于點,在中,可求得,則,可求得,則(2)以為原點,方向為軸,方向為軸,方向為軸,建立空間直角坐標(biāo)系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設(shè)二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點睛】本小題主要考查根據(jù)線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1).(2)見解析.【解析】試題分析:(1)設(shè)根據(jù)題意得到,化簡得到軌跡方程;(2)設(shè),,,,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.解析:(1)因為拋物線的方程為,所以的坐標(biāo)為,設(shè),因為圓與軸、直線都相切,平行于軸,所以圓的半徑為,點,則直線的方程為,即,所以,又,所以,即,所以的方程為.(2)設(shè),,,由(1)知,點處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時,取得極小值也是最小值,即取得最小值,此時.點睛:求軌跡方程,一般是問誰設(shè)誰的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進行運算也可以轉(zhuǎn)化為斜率來理解,然后借助韋達定理求解即可運算此類題計算一定要仔細(xì).20、(1)的普通方程為.的直角坐標(biāo)方程為(2)(-1,0)或(2,3)【解析】
(1)對直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對整理并兩邊乘以,結(jié)合,即可求得曲線的直角坐標(biāo)方程。(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設(shè)點P的坐標(biāo)為,由題可得:,利用兩點距離公式列方程即可求解?!驹斀狻拷猓海?)由消去參數(shù),得.即直線的普通方程為.因為又,∴曲線的直角坐標(biāo)方程為(2)由知,曲線C是以Q(1,1)為圓心,為半徑的圓設(shè)點P的坐標(biāo)為,則點P到上的點的最短距離為|PQ|即,整理得,解得所以點P的坐標(biāo)為(-1,0)或(2,3)【點睛】本題主要考查了參數(shù)方程化為普通方程及極坐標(biāo)方程化為直角坐標(biāo)方程,還考查了轉(zhuǎn)化思想及兩點距離公式,考查了方程思想及計算能力,屬于中檔題。21、(1)(2)4【解析】
(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項,,設(shè)數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.【點睛】本題考查等差數(shù)列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數(shù)列通項的思路(1)在等差數(shù)列中,是最基本的兩個量,一般可設(shè)出和,利用等差數(shù)列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度CFG樁基礎(chǔ)施工勞務(wù)合同協(xié)議書3篇
- 2025版農(nóng)村土地流轉(zhuǎn)不動產(chǎn)抵押租賃合同3篇
- 2025版旅游線路居間代理合同3篇
- 2025版國際貨物多式聯(lián)運合同實施細(xì)則3篇
- 2025版天然氣管道跨境輸送項目運輸服務(wù)合同3篇
- 2024年度智能制造服務(wù)戰(zhàn)略聯(lián)盟協(xié)議書3篇
- 2024年電子設(shè)備借款與購銷服務(wù)合同3篇
- 2025年度二零二五班主任學(xué)生科技創(chuàng)新與競賽指導(dǎo)合同3篇
- 2025年度白酒產(chǎn)區(qū)生態(tài)環(huán)境保護合作合同2篇
- 2024年版:基礎(chǔ)設(shè)施建設(shè)水泥采購合同3篇
- 2025年上半年河南省西峽縣部分事業(yè)單位招考易考易錯模擬試題(共500題)試卷后附參考答案-1
- 深交所創(chuàng)業(yè)板注冊制發(fā)行上市審核動態(tài)(2020-2022)
- 電力系統(tǒng)繼電保護試題以及答案(二)
- 小學(xué)生防打架斗毆安全教育
- 燃?xì)庥邢薰就话l(fā)環(huán)境專項應(yīng)急預(yù)案
- 2024年新人教版七年級上冊歷史 第14課 絲綢之路的開通與經(jīng)營西域
- 狼瘡性腦病的護理
- 2024版砂石料物流配送服務(wù)合同3篇
- 醫(yī)療糾紛事件匯報
- 2024年村干部個人工作總結(jié)例文(3篇)
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
評論
0/150
提交評論