《智能制造系統(tǒng)感知分析與決策 》 課件全套 宮琳 第1-9章 緒論 - 制造系統(tǒng)適人性評估與驗證_第1頁
《智能制造系統(tǒng)感知分析與決策 》 課件全套 宮琳 第1-9章 緒論 - 制造系統(tǒng)適人性評估與驗證_第2頁
《智能制造系統(tǒng)感知分析與決策 》 課件全套 宮琳 第1-9章 緒論 - 制造系統(tǒng)適人性評估與驗證_第3頁
《智能制造系統(tǒng)感知分析與決策 》 課件全套 宮琳 第1-9章 緒論 - 制造系統(tǒng)適人性評估與驗證_第4頁
《智能制造系統(tǒng)感知分析與決策 》 課件全套 宮琳 第1-9章 緒論 - 制造系統(tǒng)適人性評估與驗證_第5頁
已閱讀5頁,還剩815頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第1章緒論引言01智能制造系統(tǒng)發(fā)展歷程02人-信息-物理系統(tǒng)03智能制造過程感知、分析與決策框架04目錄01PARTONE引言引言智能制造作為現(xiàn)代工業(yè)發(fā)展的核心方向,正引領(lǐng)著制造業(yè)向數(shù)字化、網(wǎng)絡(luò)化和智能化的方向邁進(jìn)。其本質(zhì)是通過新一代信息通信技術(shù)與先進(jìn)制造技術(shù)的深度融合,實現(xiàn)設(shè)計、生產(chǎn)、管理和服務(wù)等制造活動的全面智能化。接下來,將詳細(xì)探討智能制造的本質(zhì)、背景與趨勢,了解這一變革性生產(chǎn)方式如何提升制造質(zhì)量和效率,推動企業(yè)在全球競爭中占據(jù)優(yōu)勢地位。引言智能制造的本質(zhì)制造業(yè)是國民經(jīng)濟的核心,是國家發(fā)展的基礎(chǔ)。歷史證明,沒有強大的制造業(yè),國家和民族難以繁榮。建設(shè)國際競爭力的制造業(yè)是提升國力、保障安全和建設(shè)強國的必由之路。智能制造由國家工信部定義為融合新一代信息通信技術(shù)與先進(jìn)制造技術(shù)的新型生產(chǎn)方式,涵蓋設(shè)計、生產(chǎn)、管理和服務(wù),具有自感知、自學(xué)習(xí)、自決策等功能,是制造業(yè)智能化的體現(xiàn)。智能制造融合了信息技術(shù)、工業(yè)自動化、企業(yè)管理、制造技術(shù)和人工智能,實現(xiàn)生產(chǎn)、運營、決策和商業(yè)模式的創(chuàng)新。國際上,“Smartmanufacturing”具備數(shù)據(jù)處理和閉環(huán)反饋能力,但不具備自主學(xué)習(xí)和決策能力;“Intelligentmanufacturing”則具備這些能力。目前,國際上普遍認(rèn)為智能制造處于“Smart”階段,未來將實現(xiàn)“Intelligent”。智能制造集成了多種技術(shù),是企業(yè)應(yīng)用先進(jìn)制造技術(shù)和管理手段提升競爭力的綜合技術(shù)。引言智能制造的本質(zhì)學(xué)者們從技術(shù)基礎(chǔ)、制造范式和系統(tǒng)集成等角度研究智能制造。智能制造通過新一代信息技術(shù),實現(xiàn)物理與虛擬空間的動態(tài)交互,重構(gòu)制造體系,推動全產(chǎn)業(yè)流程智能化。數(shù)據(jù)成為關(guān)鍵生產(chǎn)要素,全面滲透制造過程,推動生產(chǎn)系統(tǒng)向新一代人—網(wǎng)絡(luò)—物理三級系統(tǒng)(HCPS)轉(zhuǎn)變,揭示新一代智能制造的技術(shù)機理。智能制造的目的是提高質(zhì)量和效率、降低成本、縮短交付周期,提升服務(wù)水平,應(yīng)對市場變化,提升企業(yè)整體經(jīng)濟效益。智能制造通過智能工廠為載體,實現(xiàn)生產(chǎn)環(huán)節(jié)和流程的智能化,以工業(yè)互聯(lián)網(wǎng)為支撐,通過端到端數(shù)據(jù)流動和集成,保障高效智能運作。引言智能制造背景與趨勢分析在全球數(shù)字經(jīng)濟浪潮中,各國通過工業(yè)4.0、先進(jìn)制造等戰(zhàn)略推動新一輪產(chǎn)業(yè)革命,智能制造已成為核心驅(qū)動力。中國“十四五”規(guī)劃強調(diào)制造強國戰(zhàn)略,推動智能制造發(fā)展,目標(biāo)是到2025年大部分制造業(yè)企業(yè)實現(xiàn)數(shù)字化,到2035年全面普及智能化。規(guī)劃提出加快基礎(chǔ)零部件、軟件等瓶頸短板的突破,提升傳統(tǒng)產(chǎn)業(yè),推進(jìn)智能制造與綠色制造,建設(shè)智能制造示范工廠,完善標(biāo)準(zhǔn)體系,培育先進(jìn)制造業(yè)集群。加強關(guān)鍵核心技術(shù)攻關(guān),包括產(chǎn)品優(yōu)化設(shè)計、全流程仿真、增材制造、超精密加工等先進(jìn)工藝,以及5G、人工智能、大數(shù)據(jù)等新技術(shù)在制造過程中的應(yīng)用。智能制造以智能工廠為載體,以生產(chǎn)關(guān)鍵環(huán)節(jié)和流程的智能化為核心,依托工業(yè)互聯(lián)網(wǎng)和端到端數(shù)據(jù)流,加快信息技術(shù)與制造融合,推進(jìn)技術(shù)創(chuàng)新,實現(xiàn)精益管理和業(yè)務(wù)流程再造,構(gòu)建智能場景、車間和工廠,推動供應(yīng)鏈智慧化。引言智能制造背景與趨勢分析當(dāng)前,中國制造業(yè)正處于轉(zhuǎn)型升級關(guān)鍵期,需通過智能制造提升質(zhì)量和效率,搶占全球高端價值鏈。但面臨自主創(chuàng)新能力弱、資源利用效率低、產(chǎn)業(yè)結(jié)構(gòu)落后等問題,智能制造發(fā)展任務(wù)緊迫而艱巨。02PARTTWO智能制造系統(tǒng)發(fā)展歷程智能制造系統(tǒng)發(fā)展歷程當(dāng)代智能制造興起與發(fā)展隨著制造業(yè)競爭加劇,將傳統(tǒng)制造技術(shù)與信息技術(shù)和現(xiàn)代管理技術(shù)相結(jié)合的先進(jìn)制造技術(shù)得到發(fā)展,出現(xiàn)了計算機集成制造、敏捷制造、并行工程等理念。1948年,諾伯特維納的《控制論》奠定了工業(yè)自動化的理論基礎(chǔ)。自第三次工業(yè)革命以來,工業(yè)自動化技術(shù)迅速發(fā)展,包括PLC、DCS、人機界面、工業(yè)現(xiàn)場總線、工業(yè)以太網(wǎng)等,從單機自動化到柔性產(chǎn)線,再到工業(yè)機器人和全自動倉庫,工業(yè)自動化為智能制造奠定了基礎(chǔ)。智能制造概念經(jīng)歷了提出、發(fā)展和深化的過程。20世紀(jì)80年代,美國學(xué)者首次提出通過集成知識工程、制造軟件和機器人控制實現(xiàn)智能制造。英國學(xué)者進(jìn)一步擴展了這一概念,包括制造組織內(nèi)部的智能決策支持系統(tǒng)。1991年,日、美、歐共同發(fā)起的“智能制造國際合作研究計劃”提出智能制造系統(tǒng)將智能活動與智能機器融合,以柔性方式集成制造過程的各個環(huán)節(jié)。智能制造系統(tǒng)發(fā)展歷程當(dāng)代智能制造興起與發(fā)展智能制造包含三個基本范式:數(shù)字化制造(第一代智能制造)、數(shù)字化網(wǎng)絡(luò)化制造(第二代智能制造)和即將到來的新一代智能制造(數(shù)字化、網(wǎng)絡(luò)化、智能化制造)。從上世紀(jì)中葉到90年代中期,數(shù)字化制造以計算、通訊和控制為特征;從90年代中期開始,網(wǎng)絡(luò)化制造伴隨著互聯(lián)網(wǎng)普及進(jìn)入物聯(lián)網(wǎng)階段;當(dāng)前,人工智能技術(shù)逐漸融入制造領(lǐng)域,進(jìn)入以新一代人工智能技術(shù)為核心的智能化制造階段。然而,由于人工智能技術(shù)的發(fā)展水平有限,目前的智能制造還未達(dá)到完全智能化的階段。智能制造的演進(jìn)與發(fā)展智能制造系統(tǒng)發(fā)展歷程國際智能制造的發(fā)展德國提出與戰(zhàn)略:2013年漢諾威工業(yè)博覽會上提出工業(yè)4.0概念,發(fā)布《德國工業(yè)4.0戰(zhàn)略計劃實施建議》。核心理念:一個核心(智能+網(wǎng)絡(luò)化),兩重戰(zhàn)略(領(lǐng)先市場策略和供應(yīng)商策略),三大集成(橫向、縱向、端對端)。優(yōu)先行動領(lǐng)域:標(biāo)準(zhǔn)化和參考架構(gòu)、復(fù)雜系統(tǒng)管理、工業(yè)基礎(chǔ)寬帶設(shè)施、安全和安保等。相關(guān)舉措:《數(shù)字議程(2014-2017)》:推動德國成為數(shù)字強國?!稊?shù)字化戰(zhàn)略2025》:12項內(nèi)容構(gòu)成,包括工業(yè)4.0平臺、未來產(chǎn)業(yè)聯(lián)盟等。《德國工業(yè)戰(zhàn)略2030》:改善工業(yè)基地條件,加強技術(shù)研發(fā),維護技術(shù)主權(quán)。智能制造系統(tǒng)發(fā)展歷程國際智能制造的發(fā)展美國早期發(fā)展:2005年,美國國家標(biāo)準(zhǔn)與技術(shù)研究所提出“聰明加工系統(tǒng)研究計劃”。2006年,美國國家科學(xué)基金委員會提出智能制造概念,成立智能制造領(lǐng)導(dǎo)聯(lián)盟(SMLC)。政策與計劃:2009年:《重振美國制造業(yè)政策框架》。2011年:“先進(jìn)制造伙伴計劃(AMP)”。2012年:《美國先進(jìn)制造業(yè)戰(zhàn)略計劃》。2012年:啟動“國家制造業(yè)創(chuàng)新網(wǎng)絡(luò)計劃”,成立多個創(chuàng)新中心。智能制造系統(tǒng)發(fā)展歷程國際智能制造的發(fā)展01《制造業(yè)白皮書(2018)》:明確“互聯(lián)工業(yè)”是日本制造的未來。推動實時數(shù)據(jù)共享與使用,支持基礎(chǔ)設(shè)施建設(shè),提高數(shù)據(jù)利用率,推動國際和國內(nèi)協(xié)作。2019年:決定開放限定地域內(nèi)的無線通信服務(wù),推進(jìn)智能工廠建設(shè)。0203日本智能制造系統(tǒng)發(fā)展歷程我國智能制造早期研究與定義1986年:楊叔子院士開展智能制造研究,提出智能制造系統(tǒng)增強柔性和自組織能力。吳澄院士:智能制造是以智能技術(shù)為代表的新一代信息技術(shù),包括大數(shù)據(jù)、互聯(lián)網(wǎng)、云計算、移動技術(shù)等。周濟院士:智能制造發(fā)展經(jīng)歷數(shù)字化制造、智能制造1.0和智能制造2.0三個基本范式,目標(biāo)是實現(xiàn)數(shù)字化、網(wǎng)絡(luò)化和智能化。數(shù)字化制造的發(fā)展20世紀(jì)80年代:推廣數(shù)字化制造,實現(xiàn)設(shè)計、制造、管理過程的數(shù)字化,推動企業(yè)信息化。近年來:推進(jìn)“機器換人”、“數(shù)字化改造”,建立數(shù)字化生產(chǎn)線、車間、工廠,提升企業(yè)數(shù)字化制造水平。但中小企業(yè)數(shù)字化轉(zhuǎn)型仍需努力。智能制造系統(tǒng)發(fā)展歷程我國智能制造早期研究與定義互聯(lián)網(wǎng)+制造20世紀(jì)90年代末:互聯(lián)網(wǎng)技術(shù)成熟,推動“互聯(lián)網(wǎng)+制造”,深度融合互聯(lián)網(wǎng)和制造業(yè)。產(chǎn)品方面:實現(xiàn)設(shè)計、研發(fā)等環(huán)節(jié)的協(xié)同與共享,產(chǎn)品網(wǎng)絡(luò)化。制造方面:實現(xiàn)供應(yīng)鏈、價值鏈和端到端集成,數(shù)據(jù)流、信息流連通。服務(wù)方面:產(chǎn)品全生命周期及用戶、企業(yè)等主體通過網(wǎng)絡(luò)平臺聯(lián)接和交互,制造模式轉(zhuǎn)向以用戶為中心。制造業(yè)的核心地位與新質(zhì)生產(chǎn)力制造業(yè)的重要性:一直是產(chǎn)業(yè)體系和經(jīng)濟體系的核心,是國民經(jīng)濟的基礎(chǔ)和科學(xué)技術(shù)的基本載體。2023年:工業(yè)互聯(lián)網(wǎng)核心產(chǎn)業(yè)規(guī)模達(dá)1.35萬億元,智能工廠和數(shù)字化車間顯著提升生產(chǎn)效率。2024年:習(xí)近平總書記提出新質(zhì)生產(chǎn)力的概念,以創(chuàng)新為主導(dǎo),具備高科技、高效能、高質(zhì)量特征,推動產(chǎn)業(yè)體系高質(zhì)量、可持續(xù)發(fā)展,是中國現(xiàn)代化產(chǎn)業(yè)體系的主旋律和高質(zhì)量發(fā)展的引擎。智能制造系統(tǒng)發(fā)展歷程中國智能制造面臨的困難與挑戰(zhàn)1.智能制造應(yīng)用潛力巨大但關(guān)鍵核心技術(shù)面臨“卡脖子”難題智能制造覆蓋廣泛領(lǐng)域,發(fā)展?jié)摿薮?,市場?guī)模從2017年的1.27萬億元增長至2023年上半年超3.2萬億元。工業(yè)軟件市場和智能制造系統(tǒng)解決方案市場也迅速增長。然而,智能制造涉及技術(shù)復(fù)雜且難以復(fù)制,存在顯著技術(shù)壁壘和人才稀缺問題。核心技術(shù)受制于人,系統(tǒng)集成技術(shù)和系統(tǒng)解決方案的國產(chǎn)替代能力弱,應(yīng)用場景受限。智能制造系統(tǒng)發(fā)展歷程2.智能工廠走深向?qū)嵉嬖谛畔⒐聧u智能工廠基于數(shù)據(jù)驅(qū)動和柔性化生產(chǎn),市場規(guī)模從2020年的8560億元增長至2022年的超1萬億元,預(yù)計2025年超1.4萬億元。中國擁有62座燈塔工廠,占全球40.5%。然而,智能工廠建設(shè)復(fù)雜、成本高,中小企業(yè)負(fù)擔(dān)重,存在數(shù)據(jù)難以共享和實時監(jiān)測的技術(shù)問題。此外,缺乏適合智能工廠的數(shù)據(jù)中心軟件平臺和敏捷開發(fā)框架。中國智能制造面臨的困難與挑戰(zhàn)智能制造系統(tǒng)發(fā)展歷程3.工業(yè)互聯(lián)網(wǎng)已邁出實質(zhì)性步伐但根基不穩(wěn)工業(yè)互聯(lián)網(wǎng)通過集成現(xiàn)代信息技術(shù)實現(xiàn)高效互動,市場規(guī)模2022年超1.2萬億元,同比增長15.5%。平臺應(yīng)用普及率從2021年的17.5%增長至2022年的22.2%。工業(yè)互聯(lián)網(wǎng)平臺分為軟件驅(qū)動類、制造經(jīng)驗驅(qū)動類和技術(shù)驅(qū)動類,應(yīng)用場景不斷拓寬。然而,存在IT與OT融合不足、標(biāo)準(zhǔn)化程度低的問題,難以解決實際工業(yè)問題,跨行業(yè)復(fù)用性差,缺乏普遍接受的標(biāo)準(zhǔn)和協(xié)議,增加了部署復(fù)雜性。中國智能制造面臨的困難與挑戰(zhàn)智能制造系統(tǒng)發(fā)展歷程中國智能制造的未來發(fā)展趨勢在互聯(lián)網(wǎng)、云計算、大數(shù)據(jù)和物聯(lián)網(wǎng)等新一代信息技術(shù)推動下,以大數(shù)據(jù)智能、跨媒體智能、人機混合增強智能、群體智能等為代表的新一代人工智能技術(shù)實現(xiàn)了戰(zhàn)略性突破,與先進(jìn)制造技術(shù)深度融合,形成了數(shù)字化、網(wǎng)絡(luò)化、智能化制造。新一代人工智能具備學(xué)習(xí)、生成和運用知識的能力,實現(xiàn)了質(zhì)的飛躍。智能制造系統(tǒng)發(fā)展歷程新一代智能制造系統(tǒng)新一代智能制造系統(tǒng)由智能產(chǎn)品、智能生產(chǎn)、智能服務(wù),以及工業(yè)智聯(lián)網(wǎng)和智能制造云兩大支撐系統(tǒng)組成。智能產(chǎn)品和裝備是主體,帶來無限創(chuàng)新空間,預(yù)計到2035年升級為智能產(chǎn)品和裝備。近期重點是研制十大智能產(chǎn)品,如智能機器人、無人機、智能汽車等。流程工業(yè)和離散型智能工廠流程工業(yè)在新一代智能制造中最有可能率先突破,如石化行業(yè)的智能工廠能大幅提高生產(chǎn)優(yōu)化和安全環(huán)保水平。離散型智能工廠應(yīng)用新一代人工智能技術(shù),實現(xiàn)加工質(zhì)量和工藝優(yōu)化、裝備健康保障和智能調(diào)度。近期突破重點是建設(shè)十家智能工廠原型,如鋼鐵、電解鋁、3C加工等。智能服務(wù)和產(chǎn)業(yè)模式變革智能制造系統(tǒng)發(fā)展歷程新一代智能制造系統(tǒng)新一代人工智能技術(shù)將推動制造業(yè)從產(chǎn)品中心向用戶中心轉(zhuǎn)變,產(chǎn)業(yè)模式從大規(guī)模生產(chǎn)轉(zhuǎn)向規(guī)模定制化生產(chǎn),形態(tài)從生產(chǎn)型制造向生產(chǎn)服務(wù)型制造轉(zhuǎn)變。近期重點是在十個行業(yè)推行智能制造新模式,如家電、家具、服裝的規(guī)?;ㄖ疲娇瞻l(fā)動機等的遠(yuǎn)程運維服務(wù)。智能制造云和工業(yè)智聯(lián)網(wǎng)智能制造云和工業(yè)智聯(lián)網(wǎng)是新一代智能制造系統(tǒng)的重要支撐,重點是“智聯(lián)網(wǎng)”“云平臺”和“網(wǎng)絡(luò)安全”。系統(tǒng)集成將各功能系統(tǒng)和支撐系統(tǒng)集成為新一代智能制造系統(tǒng),具有集中與分布、統(tǒng)籌與精準(zhǔn)、包容與共享的特性。企業(yè)數(shù)字化轉(zhuǎn)型與高質(zhì)量發(fā)展智能制造通過工業(yè)化與信息化融合,運用網(wǎng)絡(luò)化、數(shù)字化、智能化技術(shù),提升企業(yè)競爭力和市場地位。企業(yè)必須抓住數(shù)字化轉(zhuǎn)型機遇,實現(xiàn)高質(zhì)量發(fā)展,推動產(chǎn)業(yè)技術(shù)變革和優(yōu)化升級,減少資源能源消耗,暢通產(chǎn)業(yè)鏈供應(yīng)鏈,助力碳達(dá)峰碳中和,促進(jìn)我國制造業(yè)邁向全球價值鏈中高端智能制造系統(tǒng)發(fā)展歷程中國智能制造戰(zhàn)略目標(biāo)與方針新質(zhì)生產(chǎn)力與智能制造的未來發(fā)展習(xí)近平總書記在2023年提出了新質(zhì)生產(chǎn)力的戰(zhàn)略意義,強調(diào)其在中國現(xiàn)代化產(chǎn)業(yè)體系中的核心作用,是推動高質(zhì)量發(fā)展和民族復(fù)興的重要引擎。到2035年的發(fā)展目標(biāo)到2035年,中國制造業(yè)將達(dá)到世界制造強國陣營中等水平,創(chuàng)新能力大幅提升,重點領(lǐng)域?qū)崿F(xiàn)重大突破,整體競爭力顯著增強,形成全球創(chuàng)新引領(lǐng)能力,全面實現(xiàn)工業(yè)化。到新中國成立一百年時,中國制造業(yè)將進(jìn)入世界制造強國前列,具備全球領(lǐng)先的技術(shù)體系和產(chǎn)業(yè)體系。智能制造系統(tǒng)發(fā)展歷程中國智能制造的發(fā)展需要堅持以下戰(zhàn)略方針:需求牽引:以需求為導(dǎo)向,滿足制造強國建設(shè)和產(chǎn)業(yè)轉(zhuǎn)型升級的需求,推動智能制造服務(wù)于經(jīng)濟發(fā)展和社會進(jìn)步的廣泛需求。創(chuàng)新驅(qū)動:抓住新一代人工智能技術(shù)與制造業(yè)融合的機遇,實現(xiàn)從跟隨到引領(lǐng)的跨越發(fā)展,推動產(chǎn)業(yè)的技術(shù)超越和創(chuàng)新升級。因企制宜:以企業(yè)為主體,根據(jù)各企業(yè)實際情況探索適合的智能化升級路徑,充分發(fā)揮企業(yè)的內(nèi)生動力。產(chǎn)業(yè)升級:通過營造良好的生態(tài)環(huán)境,推動中國制造業(yè)實現(xiàn)全方位現(xiàn)代化轉(zhuǎn)型,從而提升整體發(fā)展質(zhì)量、效率和動力。智能制造系統(tǒng)發(fā)展歷程人工智能大模型的影響生成式大模型如ChatGPT的出現(xiàn)標(biāo)志著人工智能進(jìn)入了全新的大模型時代,其在解決實際問題和推動智能化轉(zhuǎn)型方面具有革命性意義。預(yù)計其將極大地推動各行業(yè)的智能化轉(zhuǎn)型,包括智能制造領(lǐng)域的技術(shù)革新和應(yīng)用拓展。未來展望通過四年的攻關(guān)試點示范行動,中國制造業(yè)將為2028-2035年的智能化升級做好準(zhǔn)備,預(yù)計將迎來全國范圍內(nèi)智能化升級的新高潮,推動制造業(yè)實現(xiàn)更加智能化、高效率和可持續(xù)發(fā)展,為中華民族的偉大復(fù)興貢獻(xiàn)力量。這些發(fā)展目標(biāo)和戰(zhàn)略方針將幫助中國制造業(yè)加速邁向全球價值鏈高端,實現(xiàn)中華民族的偉大復(fù)興中國夢。03PARTTHREE人-信息-物理系統(tǒng)人-信息-物理系統(tǒng)智能制造是一個大概念,其內(nèi)涵伴隨著信息技術(shù)與制造技術(shù)的發(fā)展和融合而不斷前進(jìn)。目前,隨著互聯(lián)網(wǎng)、大數(shù)據(jù)、人工智能等技術(shù)的迅猛發(fā)展,智能制造正在加速向新一代智能制造邁進(jìn)。同時,盡管智能制造的內(nèi)涵在不斷演進(jìn),但其所追求的根本目標(biāo)是不變的:始終都是盡可能優(yōu)化以提高質(zhì)量、增加效率、降低成本,增強競爭力;并且,從系統(tǒng)構(gòu)成的角度看,智能制造系統(tǒng)也始終都是由人、信息系統(tǒng)和物理系統(tǒng)協(xié)同集成的人-信息-物理系統(tǒng)(Human-Cyber-PhysicalSystems)--HCPS,或者說,智能制造的本質(zhì)就是設(shè)計、構(gòu)建和應(yīng)用各種不同用途、不同層面的HCPS,當(dāng)然,HCPS的內(nèi)涵和技術(shù)體系也是在不斷演進(jìn)的。人-信息-物理系統(tǒng)制造系統(tǒng)發(fā)展的四個階段總結(jié)第一階段:人-物理系統(tǒng)(HPS)的傳統(tǒng)制造1歷史:自石器時代至工業(yè)革命,依賴人力和簡易工具進(jìn)行生產(chǎn)。特點:主要由人和物理系統(tǒng)(如機器)組成,人類是系統(tǒng)的創(chuàng)造者和使用者。第二階段:基于HCPS1.0的數(shù)字化制造進(jìn)展:隨第三次工業(yè)革命,數(shù)字化技術(shù)的廣泛應(yīng)用。演進(jìn):引入信息系統(tǒng)(CyberSystem),形成“人-信息-物理”三元系統(tǒng),如數(shù)控機床的應(yīng)用。第三階段:基于HCPS1.5的數(shù)字化網(wǎng)絡(luò)化制造變革:互聯(lián)網(wǎng)技術(shù)的普及推動制造業(yè)向“互聯(lián)網(wǎng)+數(shù)字化制造”轉(zhuǎn)變。新特征:信息系統(tǒng)增強了數(shù)據(jù)共享和系統(tǒng)集成優(yōu)化,形成更高效的制造流程和協(xié)同環(huán)境。第四階段:基于HCPS2.0的新一代智能制造崛起:以新一代人工智能技術(shù)為核心,推動制造系統(tǒng)邁向智能化和自主化。特征:信息系統(tǒng)具備自主感知、學(xué)習(xí)和決策能力,實現(xiàn)了真正的智能制造,如智能機床的應(yīng)用。這些階段的發(fā)展展示了制造業(yè)從傳統(tǒng)生產(chǎn)方式到智能化制造的演進(jìn)歷程,每一階段都標(biāo)志著技術(shù)與生產(chǎn)方式的革新,推動了整體社會和經(jīng)濟結(jié)構(gòu)的變革。人-信息-物理系統(tǒng)面向新一代智能制造的HCPS2.0的內(nèi)涵新一代智能制造是面向未來的制造系統(tǒng),融合了人工智能技術(shù)和制造技術(shù),從多個視角定義了其內(nèi)涵和特征。系統(tǒng)構(gòu)成和角色定位綜合智能系統(tǒng):由人類、擁有人工智能的信息系統(tǒng)和物理系統(tǒng)組成,旨在實現(xiàn)制造價值創(chuàng)造目標(biāo)。物理系統(tǒng):主要執(zhí)行制造活動的能量和物質(zhì)流動,是制造活動的執(zhí)行者。信息系統(tǒng):擁有人工智能,是制造活動信息流的核心,支持感知、認(rèn)知、分析決策和控制,優(yōu)化物理系統(tǒng)運行。人的角色:是系統(tǒng)的創(chuàng)造者、使用者和管理者,掌控制造活動的目標(biāo)、方法和最終決策。技術(shù)本質(zhì)和發(fā)展趨勢技術(shù)融合:新一代智能制造通過深度融合新一代人工智能技術(shù)和制造技術(shù),實現(xiàn)了三大技術(shù)進(jìn)步:建模能力提升:處理復(fù)雜性和不確定性問題的能力顯著提高,實現(xiàn)制造系統(tǒng)優(yōu)化。人-信息-物理系統(tǒng)智能制造中的人機協(xié)同問題01020304"十四五"規(guī)劃綱要強調(diào)智能制造的重要性,旨在推動制造業(yè)智能化升級,實現(xiàn)向"中國智造"的轉(zhuǎn)變。盡管中國制造業(yè)發(fā)展迅速,但仍存在自主創(chuàng)新能力不足、資源利用效率低等問題,智能制造轉(zhuǎn)型升級任務(wù)緊迫。人機協(xié)同是智能制造的核心,人與機器需共同完成任務(wù),實現(xiàn)資源適配與自主協(xié)同。"人機智能融合"是智能制造的深層內(nèi)涵,涉及人與信息系統(tǒng)、物理系統(tǒng)的交互。智能制造面臨的挑戰(zhàn)包括生產(chǎn)模式需適應(yīng)柔性化、個性化需求,人作為關(guān)鍵因素不能被忽視。智能生產(chǎn)單元應(yīng)由自動化、信息化、智能化模塊組成,實現(xiàn)人機協(xié)同,提高生產(chǎn)效率。智能制造需重視人機協(xié)同,通過智能生產(chǎn)單元實現(xiàn)柔性化生產(chǎn),滿足個性化需求,同時保障工人的安全感和幸福感,促進(jìn)人與機器的和諧共處。人-信息-物理系統(tǒng)人與信息系統(tǒng)、物理系統(tǒng)交互的技術(shù)體系HCPS2.0系統(tǒng):智能制造系統(tǒng)基于新一代信息技術(shù),旨在實現(xiàn)人機協(xié)同和生產(chǎn)過程的自治。智能融合:關(guān)鍵問題在于信息系統(tǒng)如何通過數(shù)據(jù)與模型實時感知、認(rèn)知、分析、決策與控制物理系統(tǒng),并與人協(xié)同優(yōu)化資源分配。數(shù)字孿生技術(shù):幫助操作人員更好地了解系統(tǒng)運行狀態(tài)。人機協(xié)作:智能制造的柔性生產(chǎn)趨勢要求實現(xiàn)人與制造系統(tǒng)的有效協(xié)同,特別是信息系統(tǒng)的狀態(tài)感知。物理系統(tǒng)的角色:智能制造中的智能設(shè)備和機器人是核心組成部分,需要發(fā)展更靈活、安全的物理系統(tǒng)以實現(xiàn)真正的人機協(xié)作。32145人-信息-物理系統(tǒng)人與信息系統(tǒng)、物理系統(tǒng)交互的技術(shù)體系未來研發(fā)方向:研究人與機器人共同完成復(fù)雜作業(yè)的任務(wù),減輕人的負(fù)擔(dān),提高生產(chǎn)效率和安全性,特別是在航空航天、造船和建筑等復(fù)雜制造領(lǐng)域??傮w來說,自動化和智能化的發(fā)展并不會完全替代人,如何保障人與物理系統(tǒng)的交互順暢,使機器快速準(zhǔn)確地捕獲操作人員的作業(yè)意圖便成為實現(xiàn)人機協(xié)同作業(yè)的關(guān)鍵。新一代智能制造HCPS2.0的原理簡圖人-信息-物理系統(tǒng)新一代智能制造系統(tǒng)中人機交互鴻溝人機交互的三個階段:操作人員感知信息物理系統(tǒng)并表達(dá)作業(yè)意圖。信息物理系統(tǒng)理解作業(yè)意圖并做出反應(yīng)。評估人機信息傳輸過程,優(yōu)化作業(yè)方式,降低認(rèn)知負(fù)荷。人機交互鴻溝:評估鴻溝:操作人員對系統(tǒng)狀態(tài)的理解與實際運行情況的差異。執(zhí)行鴻溝:操作者心理認(rèn)知與系統(tǒng)實際運行方式之間的差距。交互鴻溝的挑戰(zhàn):操作人員需投入認(rèn)知資源來理解系統(tǒng)狀態(tài)和預(yù)測操作結(jié)果。系統(tǒng)復(fù)雜性增加,交互鴻溝也隨之增大。人-信息-物理系統(tǒng)新一代智能制造系統(tǒng)中人機交互鴻溝減小交互鴻溝的方法:設(shè)計者需了解操作人員的操作習(xí)慣與認(rèn)知能力。研究人的潛在學(xué)習(xí)理論與心智模型,幫助設(shè)計更符合用戶需求的系統(tǒng)。人機交互的評估與執(zhí)行鴻溝04PARTFOUR智能制造過程感知、分析與決策框架智能制造過程感知、分析與決策框架工業(yè)人工智能(AI)正在迅速變革制造業(yè),通過整合先進(jìn)的算法、硬件和軟件技術(shù),實現(xiàn)了更高效、更智能的生產(chǎn)與管理。這一變革不僅依賴于核心賦能技術(shù)與工程化關(guān)鍵技術(shù)的共同使能,還包括了產(chǎn)業(yè)與應(yīng)用層面的深度融合。本節(jié)將從技術(shù)、產(chǎn)業(yè)和應(yīng)用三個視角深入探討工業(yè)AI的技術(shù)體系、融合產(chǎn)品與服務(wù),以及其在工業(yè)全環(huán)節(jié)中的核心應(yīng)用模式與場景。智能制造過程感知、分析與決策框架智能制造體系框架技術(shù)視角:核心賦能技術(shù)與工程化關(guān)鍵技術(shù)共同推動工業(yè)AI的發(fā)展。工程化技術(shù):提供軟硬件支持和工業(yè)適配,確保AI技術(shù)在工業(yè)領(lǐng)域的實際應(yīng)用。產(chǎn)業(yè)視角:AI與工業(yè)融合形成的關(guān)鍵產(chǎn)品、方案與服務(wù)是賦能工業(yè)的載體。基礎(chǔ)軟硬件:提供通用軟硬件產(chǎn)品,如芯片、計算模塊、AI框架等。智能工業(yè)裝備:融合智能算法的機器人、AGV等生產(chǎn)制造裝備。自動化與邊緣系統(tǒng):智能算法融合的工業(yè)控制系統(tǒng)。平臺/工業(yè)軟件與方案:包括AI融合的傳統(tǒng)軟件和工業(yè)互聯(lián)網(wǎng)平臺解決方案。應(yīng)用視角:工業(yè)智能在全環(huán)節(jié)形成的核心應(yīng)用模式與場景。識別類應(yīng)用:工業(yè)視覺檢測、表單識別、語音信號識別等。核心賦能技術(shù):結(jié)合數(shù)據(jù)科學(xué)、知識工程、探索技術(shù)、應(yīng)用技術(shù),解決工業(yè)場景問題。智能制造過程感知、分析與決策框架智能制造體系框架數(shù)據(jù)建模優(yōu)化類應(yīng)用:智能排產(chǎn)、設(shè)備運維、工藝參數(shù)優(yōu)化等,基于機器學(xué)習(xí)、深度學(xué)習(xí)技術(shù)。知識推理決策類應(yīng)用:冶煉、設(shè)備故障診斷、供應(yīng)鏈知識圖譜等專家系統(tǒng)。工業(yè)智能體系智能制造過程感知、分析與決策框架智能感知與決策方法智能制造是指通過引入先進(jìn)的信息與通信技術(shù),將生產(chǎn)過程各環(huán)節(jié)進(jìn)行高度集成與優(yōu)化,以實現(xiàn)生產(chǎn)過程智能化、柔性化、高效化的一種制造模式。在智能制造中,人工智能技術(shù)扮演著重要的角色,尤其是在智能感知與決策支持方面的應(yīng)用,智能制造過程感知、分析與決策框架智能感知方法在智能制造中,智能感知是指通過感知技術(shù),獲取制造過程中的信息并對其進(jìn)行處理和分析,以實現(xiàn)對生產(chǎn)環(huán)境、設(shè)備狀態(tài)、產(chǎn)品質(zhì)量等方面的感知與監(jiān)控。人工智能在智能感知中的應(yīng)用主要包括圖像處理、語音識別和傳感器數(shù)據(jù)分析等方面。智能制造過程感知、分析與決策框架圖像處理圖像處理是智能制造中常用的一種感知方法。通過使用計算機視覺和圖像處理技術(shù),可以對生產(chǎn)現(xiàn)場中的圖像進(jìn)行識別、分析和處理。以下是具體的應(yīng)用場景實例:1)生產(chǎn)過程監(jiān)控:通過攝像頭采集生產(chǎn)現(xiàn)場圖像,利用圖像處理技術(shù)進(jìn)行實時監(jiān)控??蓹z測設(shè)備運行狀態(tài)異常、工藝參數(shù)偏差,及時發(fā)現(xiàn)并處理問題。2)產(chǎn)品質(zhì)量檢測:利用計算機視覺對產(chǎn)品表面進(jìn)行缺陷檢測,如瑕疵、劃痕、變形等??蓪崿F(xiàn)全自動監(jiān)測,提高檢測效率和準(zhǔn)確性,降低人工成本。3)機器人視覺導(dǎo)航:利用圖像識別技術(shù),實現(xiàn)機器人對生產(chǎn)環(huán)境的感知和導(dǎo)航。可用于自動搬運、自動裝配等復(fù)雜作業(yè),提高生產(chǎn)自動化水平。智能制造過程感知、分析與決策框架工業(yè)互聯(lián)網(wǎng)體系結(jié)構(gòu)智能制造過程感知、分析與決策框架語音識別語音識別技術(shù)(AutomaticSpeechRecognition,ASR)是指通過計算機系統(tǒng)將人類語音信號轉(zhuǎn)換為文字或控制命令的過程。它是人工智能和信號處理領(lǐng)域的一項重要技術(shù)。在智能制造中,語音識別可以應(yīng)用于生產(chǎn)現(xiàn)場的工作指令傳達(dá)和設(shè)備狀態(tài)監(jiān)測等方面。通過將語音指令轉(zhuǎn)化為機器可讀的指令,可以實現(xiàn)對生產(chǎn)過程的智能化控制和管理。語音識別技術(shù)在實際應(yīng)用中還需要處理語音的噪音干擾、口音變化、語速變化等問題,以提高識別準(zhǔn)確率和魯棒性。以下是具體的應(yīng)用場景實例:智能制造過程感知、分析與決策框架語音識別1)生產(chǎn)現(xiàn)場的語音指令控制:工人可以通過語音指令控制生產(chǎn)設(shè)備的啟停、參數(shù)調(diào)整等操作,避免了繁瑣的按鍵操作,提高了工人的工作效率和便捷性,可應(yīng)用于對危險環(huán)境下的遠(yuǎn)程設(shè)備控制,提高生產(chǎn)安全性。2)生產(chǎn)任務(wù)的語音下達(dá):管理人員可以通過語音下達(dá)生產(chǎn)任務(wù)、工藝指令等。指令被直接轉(zhuǎn)化為機器可讀的數(shù)據(jù),減少了手工錄入的錯誤。提高了生產(chǎn)任務(wù)分配的及時性和準(zhǔn)確性,增強了生產(chǎn)調(diào)度的靈活性。3)維修保養(yǎng)的語音記錄:維修人員可以通過語音記錄設(shè)備維修和保養(yǎng)的信息。系統(tǒng)自動轉(zhuǎn)化為電子臺賬,方便后續(xù)查閱和分析。提高了維修記錄的完整性和準(zhǔn)確性,為設(shè)備管理提供依據(jù)。智能制造過程感知、分析與決策框架傳感器數(shù)據(jù)分析傳感器數(shù)據(jù)分析是智能制造中的另一個重要的感知方法。通過利用傳感器感知設(shè)備和環(huán)境的狀態(tài)信息,可以實時監(jiān)測生產(chǎn)過程中的溫度、壓力、濕度等參數(shù),并進(jìn)行數(shù)據(jù)分析和預(yù)測。通過分析傳感器數(shù)據(jù),可以及時發(fā)現(xiàn)異常情況,并采取相應(yīng)的措施,以提高生產(chǎn)效率和產(chǎn)品質(zhì)量。以下是具體的應(yīng)用場景實例:1)設(shè)備狀態(tài)監(jiān)測與故障診斷:在生產(chǎn)設(shè)備上安裝振動、溫度、電流等傳感器,實時監(jiān)測設(shè)備運行狀況。通過分析傳感器數(shù)據(jù),識別設(shè)備異常狀態(tài),預(yù)測可能的故障。利用數(shù)據(jù)挖掘和機器學(xué)習(xí)技術(shù),建立設(shè)備健康狀態(tài)模型,進(jìn)行故障診斷和預(yù)測性維護。2)工藝參數(shù)優(yōu)化:在生產(chǎn)線關(guān)鍵工序安裝壓力、流量、轉(zhuǎn)速等傳感器。分析這些工藝參數(shù)的實時數(shù)據(jù),找出影響產(chǎn)品質(zhì)量的關(guān)鍵因素。利用優(yōu)化算法調(diào)整工藝參數(shù),實現(xiàn)產(chǎn)品質(zhì)量的持續(xù)改善。3)能源管理:在生產(chǎn)車間安裝電力、水、氣等能源消耗傳感器。分析能源使用數(shù)據(jù),發(fā)現(xiàn)能源消耗異常點和優(yōu)化空間?;诜治鼋Y(jié)果,調(diào)整生產(chǎn)計劃和設(shè)備運行模式,提高能源利用效率。智能制造過程感知、分析與決策框架決策支持方法智能決策是工業(yè)互聯(lián)網(wǎng)智能化的“大腦”,是組織或個人綜合利用多種智能技術(shù)和工具,基于既定目標(biāo),對相關(guān)數(shù)據(jù)進(jìn)行建模、分析并得到?jīng)Q策的過程。該過程綜合約束條件、策略、偏好、不確定性等因素,可自動實現(xiàn)最優(yōu)決策,以用于解決新增長時代日益復(fù)雜的生產(chǎn)、生活問題。智能決策的關(guān)鍵技術(shù)主要包含機器學(xué)習(xí)技術(shù)、運籌優(yōu)化技術(shù)等多種智能技術(shù)。機器學(xué)習(xí)技術(shù)通過強化學(xué)習(xí)、深度學(xué)習(xí)等算法實現(xiàn)預(yù)測,通常需要大量數(shù)據(jù)來驅(qū)動模型以實現(xiàn)較好的效果;適用于描述預(yù)測類場景,如銷量預(yù)測。運籌優(yōu)化技術(shù)基于對現(xiàn)實問題進(jìn)行準(zhǔn)確描述刻畫來建模,通過運籌優(yōu)化算法在一定約束條件下求目標(biāo)函數(shù)最優(yōu)解,對數(shù)據(jù)量的依依賴性弱,結(jié)果的可解釋性強;適用于規(guī)劃、調(diào)度、協(xié)同類問題,如人員排班、補配貨。在邏輯側(cè)對問題進(jìn)行理解及分析進(jìn)而建模(運籌優(yōu)化),在數(shù)據(jù)側(cè)對起因及結(jié)果的記錄乃至預(yù)測(機器學(xué)習(xí)),兩者構(gòu)成了現(xiàn)實工業(yè)生產(chǎn)中解決問題的要件,但各自均存在不同程度的局限性,因此需要取長補短共同服務(wù)于決策質(zhì)量和速度的提升。智能制造過程感知、分析與決策框架數(shù)據(jù)分析數(shù)據(jù)分析是智能制造中常用的一種決策支持方法。通過對感知到的數(shù)據(jù)進(jìn)行統(tǒng)計分析和挖掘,可以獲取生產(chǎn)過程中的關(guān)鍵指標(biāo)和變化趨勢,以支持管理人員進(jìn)行決策制定。例如,通過對設(shè)備運行數(shù)據(jù)的分析,可以提前預(yù)測設(shè)備故障,并制定相應(yīng)的維修計劃,以避免生產(chǎn)中斷和損失。常用的數(shù)據(jù)分析方法如下:1)時間序列分析:用于分析和預(yù)測生產(chǎn)過程中各種指標(biāo)隨時間的變化趨勢,如產(chǎn)品產(chǎn)量、設(shè)備運行狀態(tài)等。常用的方法包括移動平均法、指數(shù)平滑法、ARIMA模型等??梢灶A(yù)測未來的變化趨勢,輔助生產(chǎn)計劃制定。2)回歸分析:建立生產(chǎn)過程中各因素之間的定量關(guān)系模型,如產(chǎn)品質(zhì)量與工藝參數(shù)的回歸關(guān)系??梢苑治鲫P(guān)鍵因素對目標(biāo)指標(biāo)的影響程度,為優(yōu)化生產(chǎn)參數(shù)提供依據(jù)。智能制造過程感知、分析與決策框架數(shù)據(jù)分析3)聚類分析:將生產(chǎn)過程中的樣本數(shù)據(jù)劃分到不同的簇中,挖掘數(shù)據(jù)中的自然分組。可以識別設(shè)備狀態(tài)異常點、產(chǎn)品質(zhì)量問題等,為故障診斷和質(zhì)量管控提供依據(jù)。4)機器學(xué)習(xí):利用神經(jīng)網(wǎng)絡(luò)、決策樹等機器學(xué)習(xí)算法,對生產(chǎn)數(shù)據(jù)進(jìn)行建模和預(yù)測??梢詼?zhǔn)確預(yù)測設(shè)備故障、產(chǎn)品質(zhì)量問題,支持制定預(yù)防性維護和質(zhì)量改進(jìn)措施。5)異常檢測:通過建立生產(chǎn)過程的正常運行模型,識別數(shù)據(jù)中的異常值和異常模式??梢约皶r發(fā)現(xiàn)設(shè)備故障苗頭、工藝偏差等,為預(yù)防性維護和質(zhì)量改進(jìn)提供支持。智能制造過程感知、分析與決策框架模型建立模型建立是一種將現(xiàn)實生產(chǎn)過程抽象為數(shù)學(xué)模型的方法。通過建立適當(dāng)?shù)哪P?,可以對生產(chǎn)過程中的關(guān)鍵參數(shù)進(jìn)行仿真和優(yōu)化。建立合適的模型后,可以對關(guān)鍵參數(shù)進(jìn)行模擬和優(yōu)化,找到最佳方案。在智能制造中常見的建模實例有以下幾種:1)庫存管理模型:通過建立庫存管理數(shù)學(xué)模型,可以模擬庫存水平、訂貨周期、訂貨量等參數(shù)的變化。優(yōu)化這些參數(shù),可以最大化利潤,同時滿足客戶需求,避免缺貨和積壓;2)供應(yīng)鏈優(yōu)化模型:建立包括采購、生產(chǎn)、運輸?shù)拳h(huán)節(jié)的供應(yīng)鏈數(shù)學(xué)模型。通過優(yōu)化模型,協(xié)調(diào)各環(huán)節(jié)的資源配置,降低總成本,提高供應(yīng)鏈效率;3)設(shè)備維護優(yōu)化模型:建立設(shè)備故障率、維修成本等參數(shù)的數(shù)學(xué)模型。根據(jù)模型預(yù)測優(yōu)化維護周期,降低設(shè)備故障率,減少維修成本。智能制造過程感知、分析與決策框架優(yōu)化算法優(yōu)化算法是智能制造中常用的一種決策支持方法。通過使用數(shù)學(xué)優(yōu)化算法,可以對生產(chǎn)過程中的生產(chǎn)調(diào)度、路徑規(guī)劃等問題進(jìn)行求解和優(yōu)化。在生產(chǎn)調(diào)度中,可以利用優(yōu)化算法對資源分配和任務(wù)安排進(jìn)行優(yōu)化,以實現(xiàn)生產(chǎn)任務(wù)的高效完成。以下是在智能制造中常用的優(yōu)化算法:1)遺傳算法(GeneticAlgorithm,GA):模擬自然選擇和遺傳的過程,通過選擇、交叉、變異等操作不斷優(yōu)化解。適用于復(fù)雜組合優(yōu)化問題,如生產(chǎn)排程、物流路徑規(guī)劃等??梢缘玫捷^優(yōu)的可行解。2)模擬退火算法(SimulatedAnnealing,SA):模擬金屬退火過程,通過以概率接受劣解的方式跳出局部最優(yōu)。適用于非線性、非凸優(yōu)化問題,如工廠布局、設(shè)備維護等??梢缘玫饺肿顑?yōu)解。智能制造過程感知、分析與決策框架優(yōu)化算法3)蟻群算法(AntColonyOptimization,ACO):模擬螞蟻尋找最短路徑的過程,通過信息素傳遞實現(xiàn)群體協(xié)作優(yōu)化。適用于組合優(yōu)化問題,如車間生產(chǎn)調(diào)度、物流配送路徑規(guī)劃等。能夠快速找到近似最優(yōu)解。4)粒子群優(yōu)化算法(ParticleSwarmOptimization,PSO):模擬鳥群、魚群等群體生物的覓食行為,通過個體和群體信息的交互優(yōu)化。適用于連續(xù)優(yōu)化問題,如工藝參數(shù)優(yōu)化、能源管理等。該算法收斂速度快,易實現(xiàn)。5)混合整數(shù)規(guī)劃(MixedIntegerProgramming,MIP):結(jié)合整數(shù)變量和連續(xù)變量的數(shù)學(xué)規(guī)劃方法,可求解復(fù)雜的離散優(yōu)化問題。適用于生產(chǎn)線平衡、供應(yīng)鏈優(yōu)化等問題,可得到全局最優(yōu)解。求解過程復(fù)雜。本章小結(jié)

本章節(jié)全面探討了智能制造作為信息技術(shù)與現(xiàn)代制造業(yè)融合的產(chǎn)物,其核心在于實現(xiàn)生產(chǎn)過程的智能感知、分析和優(yōu)化決策。在數(shù)字經(jīng)濟的推動下,智能制造成為新一輪工業(yè)革命的焦點,國際間競爭激烈,各國紛紛推出智能制造戰(zhàn)略。中國在智能制造領(lǐng)域雖取得進(jìn)展,但也面臨關(guān)鍵技術(shù)依賴和工業(yè)互聯(lián)網(wǎng)基礎(chǔ)不穩(wěn)等挑戰(zhàn)。未來,中國將加強戰(zhàn)略部署,提升基礎(chǔ)設(shè)施和人才培養(yǎng),以增強國際競爭力。同時,章節(jié)引入了人-信息-物理系統(tǒng)(HCPS)的概念,分析了其在智能制造中的應(yīng)用,并從技術(shù)、產(chǎn)業(yè)、應(yīng)用三個視角深入討論了智能制造的體系框架,包括機器學(xué)習(xí)、深度學(xué)習(xí)、工業(yè)適配技術(shù),以及智能感知與決策方法,為智能制造的深入研究和實踐提供了理論基礎(chǔ)和應(yīng)用指導(dǎo)。項目單元建立一個智能制造過程感知分析與決策系統(tǒng),可以為保障制造系統(tǒng)的高效率及高質(zhì)量運行。本書將提供一個感知分析與決策系統(tǒng)原型的構(gòu)建與開發(fā)指導(dǎo),以支持讀者完成項目開發(fā)實訓(xùn)。本項目單元將提供功能模塊整體框架架構(gòu)說明,具體模塊開發(fā)將在后續(xù)章節(jié)中結(jié)合知識點進(jìn)行說明。本章習(xí)題1-1智能制造的定義是什么?

1-2智能制造與傳統(tǒng)制造的主要區(qū)別是什么?

1-3智能制造有哪些特征?

1-4簡述智能制造的發(fā)展階段和主要特征。

1-5中國智能制造在發(fā)展過程中面臨哪些主要挑戰(zhàn)?

1-6工業(yè)4.0的核心理念是什么?

1-7在智能制造系統(tǒng)中,物聯(lián)網(wǎng)(IoT)的角色是什么?

1-8簡述智能制造系統(tǒng)中的HCPS2.0的主要特點和其相對于HCPS1.5的進(jìn)化。

1-9在智能制造中,如何利用人工智能和機器學(xué)習(xí)技術(shù)優(yōu)化生產(chǎn)過程?

1-10工業(yè)智能的三類核心應(yīng)用模式是什么?請簡要描述。

1-11優(yōu)化算法在智能制造中的應(yīng)用有哪些?請舉例說明。

1-12常用的數(shù)據(jù)分析方法有哪些?第2章制造系統(tǒng)感知技術(shù)CONTENTS制造系統(tǒng)及其感知技術(shù)概述傳感器與機器視覺設(shè)備及物料感知環(huán)境感知人員感知目錄01PARTONE制造系統(tǒng)及其感知方式概述制造系統(tǒng)及其感知方式概述制造模式與感知概述智能制造自20世紀(jì)80年代提出,已經(jīng)演進(jìn)為包括柔性制造、網(wǎng)絡(luò)協(xié)同、全生命周期追溯和個性化定制等多樣化制造模式。這些模式利用物聯(lián)網(wǎng)技術(shù)實現(xiàn)數(shù)據(jù)互通,通過信息物理系統(tǒng)融合物理與信息層面,結(jié)合大數(shù)據(jù)分析和人工智能優(yōu)化決策過程,構(gòu)建了從數(shù)據(jù)采集到科學(xué)決策的完整閉環(huán)。機器感知系統(tǒng),作為智能制造的核心,通過傳感器和控制裝置捕獲生產(chǎn)信息,實現(xiàn)實時監(jiān)控和自動調(diào)整生產(chǎn)參數(shù),提升效率與品質(zhì)。物聯(lián)網(wǎng)技術(shù)的進(jìn)步使得機器感知在智能制造中的作用日益凸顯,不斷推動生產(chǎn)向智能化和高效率轉(zhuǎn)型。

制造系統(tǒng)及其感知方式概述制造過程及其感知對象0504020301在制造系統(tǒng)中,涉及的制造要素眾多,其中需主動采集數(shù)據(jù)信息的機器感知對象主要包括以下幾類:1.在制品感知:車間中的在制品狀態(tài)隨工序變化而變化,主動采集其數(shù)據(jù)信息有助于管理層掌握生產(chǎn)進(jìn)度并為生產(chǎn)追溯提供依據(jù),對提高生產(chǎn)效率和透明度至關(guān)重要。2.物料標(biāo)識與管理:物料的自動感知通過標(biāo)簽技術(shù)實現(xiàn),確保物料的正確使用和追溯,防止物料混淆,提高物料管理的準(zhǔn)確性和效率。3.工具與工裝定位:工具和工裝的標(biāo)識和定位減少工人尋找時間,提高生產(chǎn)準(zhǔn)備效率,讀寫器感知標(biāo)簽信息,便于快速獲取和歸還,優(yōu)化生產(chǎn)流程。4.人員身份與權(quán)限管理:通過工人佩戴的標(biāo)簽實現(xiàn)無紙化和自動化管理,記錄工序負(fù)責(zé)人,實現(xiàn)工序的電子“簽字”,并通過標(biāo)簽分配權(quán)限,監(jiān)控工人分布,增強生產(chǎn)現(xiàn)場的管理能力。制造系統(tǒng)及其感知方式概述制造過程及其感知需求制造車間環(huán)境的復(fù)雜性帶來管理上的挑戰(zhàn),傳統(tǒng)管理方式存在實時性差、數(shù)據(jù)獲取能力弱、人員主觀性強等問題,這些問題降低了生產(chǎn)能力和經(jīng)濟效益,難以滿足高效化和透明化的需求。制造過程的機器感知通過以下方面提升管理效率和決策質(zhì)量:1.生產(chǎn)要素信息采集:利用標(biāo)簽技術(shù)實時采集生產(chǎn)要素的靜態(tài)和動態(tài)信息,確保數(shù)據(jù)的實時性和準(zhǔn)確性,完善生產(chǎn)數(shù)據(jù)管理。2.生產(chǎn)要素區(qū)域定位:通過讀寫器感知標(biāo)簽,生成包含編碼和時間的感知記錄,實現(xiàn)生產(chǎn)要素的區(qū)域定位,減少搜索時間和成本,提升效率。3.制造過程實時監(jiān)控:部署設(shè)備采集關(guān)鍵數(shù)據(jù),為管理人員提供實時生產(chǎn)情況,以便及時調(diào)整計劃和資源分配。

制造系統(tǒng)及其感知方式概述制造過程及其感知需求5.數(shù)據(jù)處理與信息推送:對大量采集數(shù)據(jù)進(jìn)行預(yù)處理,消除冗余和錯誤,提高數(shù)據(jù)價值。使用復(fù)雜事件處理技術(shù)從標(biāo)簽讀取事件中推理出高語義層級事件,并將信息推送給管理人員,支持科學(xué)判斷和決策。智能制造系統(tǒng)強調(diào)物理系統(tǒng)與虛擬系統(tǒng)間的數(shù)據(jù)交互和感知,通過機器視覺、設(shè)備、物料、環(huán)境和人員感知等技術(shù),進(jìn)一步提升生產(chǎn)效率和產(chǎn)品質(zhì)量。4.制造過程追溯:利用感知記錄快速查詢產(chǎn)品加工信息,確定問題原因,提出改進(jìn)策略,提升產(chǎn)品良品率,發(fā)現(xiàn)生產(chǎn)瓶頸,優(yōu)化設(shè)備部署。02PARTTWO傳感器與機器視覺傳感器與機器視覺現(xiàn)代信息技術(shù)發(fā)展到今天,傳感器的重要性越來越高,物聯(lián)網(wǎng)、人工智能、數(shù)字孿生、智能制造以及元宇宙等,都離不開傳感器。從智能手機到智能語音設(shè)備,從能源平臺到工業(yè)設(shè)備,傳感器自然而然地“化身”為人類連接機器、人類自身,以及自然環(huán)境的外延器官,它幫助人類將曾經(jīng)不可知、難判斷的信息變成易獲取、更精準(zhǔn)的數(shù)據(jù)。在傳感器的下游往往需要機器視覺的相關(guān)技術(shù)進(jìn)行支撐,目的在于提供信息以支持生產(chǎn)制造過程,雖然場景較為固定簡單,但要求較高的精度與準(zhǔn)確率。簡而言之,機器視覺就是用機器代替人眼完成測量和判斷任務(wù)。通過機器視覺產(chǎn)品將攝取目標(biāo)轉(zhuǎn)換成圖像信號,傳送給專用的圖像處理系統(tǒng),根據(jù)像素分布和亮度、顏色等信息,轉(zhuǎn)變成數(shù)字化信號;圖像系統(tǒng)對這些信號進(jìn)行各種運算來抽取目標(biāo)的特征,進(jìn)而根據(jù)判別的結(jié)果來控制現(xiàn)場的設(shè)備動作。傳感器與機器視覺傳感器傳感器就是能感受規(guī)定的被測量并能按一定規(guī)律將這些信息轉(zhuǎn)換成可用信號的器件或裝置。一般由敏感元件和轉(zhuǎn)換元件組成。感知的對象包括溫度、濕度、電流、轉(zhuǎn)速、轉(zhuǎn)矩等諸多物理量,物聯(lián)網(wǎng)底層不單單只有傳感器,還有相應(yīng)的執(zhí)行器與控制單元。其中,IEEE1415傳感器接口規(guī)范為智能傳感器的接口做了進(jìn)一步的規(guī)范,這樣在很大程度上就可以避免當(dāng)前工業(yè)總線不一致的問題,同時也增加量傳感器的易用性與降低了集成開發(fā)的難度。傳感器與機器視覺傳感器的分類位移傳感器,也稱為線性傳感器,主要用于測量實物尺寸和機械位移。它們分為模擬式和數(shù)字式,其中模擬式進(jìn)一步分為物性型和結(jié)構(gòu)型。模擬式結(jié)構(gòu)型位移傳感器,如電位器式、電感式、電容式、電渦流式和霍爾式,它們通過物理量變化轉(zhuǎn)換為電阻或電壓輸出,反映位移量值和方向。數(shù)字式位移傳感器便于與計算機系統(tǒng)直接連接,應(yīng)用日益廣泛。常見的傳感器按被測量分類,傳感器包括位移傳感器、溫度傳感器、速度傳感器、濕度傳感器等。傳感器與機器視覺傳感器的分類溫度傳感器用于將溫度變化轉(zhuǎn)換為可用信號,分為接觸式和非接觸式。非接觸式溫度傳感器在工業(yè)制造中較為常見,基于黑體輻射定律,通過輻射測溫儀表進(jìn)行溫度測量,包括亮度法、輻射法和比色法,實現(xiàn)無需接觸被測物體的溫度監(jiān)測。智能傳感器作為高新技術(shù)的快速發(fā)展產(chǎn)物,其發(fā)展主要體現(xiàn)在微型化、智能化和高性能化三個方向。智能化不僅涉及基本的測量功能,還包括數(shù)據(jù)處理、自診斷、自補償和雙向通信等高級功能,這些功能顯著提升了傳感器的性能和可靠性。高性能化則指智能傳感器能夠自我分析和調(diào)整,抵抗外部電磁干擾,并通過數(shù)字濾波和人工神經(jīng)網(wǎng)絡(luò)技術(shù)提高信噪比和分辨力。智能傳感器功能強大,能自動化校零、標(biāo)定、校正,有效采集、存儲、記憶和預(yù)處理數(shù)據(jù)。其具備自動化檢測、故障定位、決策處理和邏輯判斷功能,還有標(biāo)準(zhǔn)化數(shù)字輸出和雙向通信功能。智能傳感器示例傳感器與機器視覺機器視覺機器視覺利用非接觸感應(yīng)設(shè)備獲取并解析圖像信息,以控制機器或流程。其分為“視”和“覺”兩部分?!耙暋蓖ㄟ^硬件如光源、相機等將外界信息轉(zhuǎn)化為數(shù)字信號;“覺”則是計算機處理這些信號的軟件算法。機器視覺系統(tǒng)主要有照明電源、鏡頭、相機、圖像采集/處理卡、圖像處理系統(tǒng)、其他外部設(shè)備等組成,如圖所示:機器視覺系統(tǒng)結(jié)構(gòu)示意機器視覺技術(shù)在工業(yè)應(yīng)用中包括檢驗、計量、測量等,例如:汽車焊裝生產(chǎn)線,檢查車門和前后蓋涂膠是否連續(xù)、高度達(dá)標(biāo);啤酒罐裝生產(chǎn)線,檢查瓶蓋密封和液位。機器視覺檢驗比人工更快更準(zhǔn)確。傳感器與機器視覺智能自動識別技術(shù)自動識別技術(shù)是一種計算機技術(shù)與自動化技術(shù)相互融合的產(chǎn)物,主要能實現(xiàn)以下幾大功能:數(shù)據(jù)編碼、數(shù)據(jù)采集與標(biāo)識、數(shù)據(jù)管理與傳輸?shù)?,包含射頻識別技術(shù)(RFID)、條碼識別技術(shù)、語音識別技術(shù)、圖像識別技術(shù)、磁識別技術(shù)以及光學(xué)字符識別(OCR)等技術(shù)。對于上述識別技術(shù),每種技術(shù)既有自己的優(yōu)勢同時也存在自身局限,因此針對不同的應(yīng)用場合及用途,往往需要將上述幾種技術(shù)聯(lián)合起來使用來滿足應(yīng)用需求,如RFID跟條碼識別技術(shù)、圖像處理技術(shù)與語音識別技術(shù)。傳感器與機器視覺圖像識別技術(shù)圖像識別技術(shù)通過計算機分析攝像機采集的圖像,識別不同目標(biāo)與對象。過程涉及預(yù)處理、特征點提取和匹配。圖像預(yù)處理將原始圖像轉(zhuǎn)化為數(shù)字圖像,包括采集、增強、復(fù)原、編解碼和分割。特征點提取采用閾值分割等算法,匹配則可用模板匹配模型。該技術(shù)廣泛應(yīng)用于貨物檢測、視覺導(dǎo)引、衛(wèi)星遙感、交通管理等領(lǐng)域,常見技術(shù)有人臉識別、指紋識別和文字識別,持續(xù)突破與發(fā)展中。傳感器與機器視覺二維碼識別技術(shù)二維碼識別技術(shù)在自動識別技術(shù)領(lǐng)域里面屬于當(dāng)前應(yīng)用較為重要而廣泛的技術(shù)。它是利用圖像識別技術(shù)對二維碼實現(xiàn)灰度化、二值化、校正并最終解碼的技術(shù)。它具有低成本、高密度存儲、超高速讀取、較強糾錯能力等特點,識別完成后,通過接口電路向計算機發(fā)出中斷信號并進(jìn)入中斷服務(wù)程序,最終將二維碼數(shù)據(jù)信息顯示在計算機,從而完成二維碼的識別過程。傳感器與機器視覺射頻識別(RFID)技術(shù)智能物料輸送系統(tǒng)主要依賴RFID和條形碼技術(shù)采集生產(chǎn)數(shù)據(jù)。RFID技術(shù)通過讀卡器與電子標(biāo)簽電磁耦合實現(xiàn)信息采集,近年發(fā)展迅速。-美國:在消費與自動化生產(chǎn)領(lǐng)域廣泛應(yīng)用RFID,技術(shù)領(lǐng)先。-歐洲:廠商如Philips、STMicroelectronics推廣RFID,應(yīng)用于交通、倉儲、金融等領(lǐng)域。-日本:2004年全面推行RFID,應(yīng)用于音樂、書籍、消費電子等多個領(lǐng)域。國內(nèi)RFID技術(shù)現(xiàn)狀-初步應(yīng)用,中低頻技術(shù)有優(yōu)勢,高頻技術(shù)待突破。-主要應(yīng)用于物流、公共交通、身份識別等領(lǐng)域。-技術(shù)發(fā)展不平衡,市場前景廣闊,需突破關(guān)鍵技術(shù)以達(dá)到國際水準(zhǔn)。傳感器與機器視覺計算機視覺相關(guān)算法計算機視覺任務(wù)涉及:1.圖像分類:區(qū)分不同類別目標(biāo)的圖像處理方法。2.物體檢測:檢測圖像中的物體及其位置,用矩形框標(biāo)識。3.語義分割:在語義上理解圖像像素,判斷哪些像素屬于哪個目標(biāo)。4.目標(biāo)跟蹤:利用視頻或圖像序列信息,對目標(biāo)外觀和運動建模,預(yù)測并標(biāo)定目標(biāo)位置。圖像預(yù)處理指在最低抽象層次的圖像上操作,輸入輸出為亮度圖像,以亮度值矩陣表示。旨在改善圖像數(shù)據(jù),抑制變形,增強重要特征。相關(guān)算法包括像素亮度變換、空間幾何變換、圖像平滑、邊緣檢測等。傳感器與機器視覺像素亮度變換像素亮度變換可以修改像素的亮度。其方法主要可以分為兩類:(1)亮度矯正。修改像素的亮度時,需要考慮改像素原來的亮度及其在圖中的位置。(2)灰度級變換。無需考慮像素在圖中的位置。亮度變換示例2傳感器與機器視覺像素亮度變換亮度矯正,理想假設(shè)下,圖像獲取和數(shù)字化設(shè)備的靈敏度不應(yīng)該與圖像位置有關(guān),但在很多實際情況下是不成立的。例如,傳感器光敏元件不具有均衡一致的靈敏度、不均勻的物體照明等原因可能使得亮度與位置有關(guān)。退化的圖像可以表示為??(??,??)=??(??,??)??(??,??),其中??(??,??)代表錯誤系數(shù),??(??,??)代表沒有退化的圖像。則矯正方法為下式??(??,??)=??(??,??)??(??,??)(2-1)灰度級變換不依賴于像素在圖像中的位置。一個變換??=??(??)可以將原來在范圍[??0,????]內(nèi)的亮度r轉(zhuǎn)換為范圍[??0,????]的亮度s??梢苑譃榫€性變換、對數(shù)變換、冪律變換、直方圖均衡化四種方法。傳感器與機器視覺像素亮度變換線性變換假設(shè)r是變換前的灰度,s是變換后的灰度,則線性變換函數(shù)為??=?????+??,當(dāng)a與b取值不同時的效果如下:a>1,增加圖像對比度;0<a<1,減小圖像對比度;a=1且b≠0,圖像整體變亮或變暗;a<0且b=0,圖像亮區(qū)域變暗,暗區(qū)域變亮;a=-1且b=255,圖像反轉(zhuǎn),獲得負(fù)片。負(fù)片可以較好增強圖像暗區(qū)域的白色或灰色細(xì)節(jié)。反片示例傳感器與機器視覺像素亮度變換對數(shù)變換的通用公式為??=c???????(1+??),其中c是一個常數(shù),假設(shè)r≥0,原圖像中范圍較窄的低灰度值映射到范圍較寬的灰度區(qū)間;灰度較寬的高灰度值區(qū)間映射為較窄的灰度區(qū)間。對數(shù)變換擴展了暗像素值并壓縮了高灰度值,能增強圖像中的低灰度細(xì)節(jié)。對數(shù)變換示例傳感器與機器視覺幾何變換幾何變換是一個矢量函數(shù)T,將一個圖像f(x0,y0)經(jīng)過幾何變換產(chǎn)生目標(biāo)圖像g(x1,y1),則該空間變換(映射)關(guān)系為幾何變換可以消除圖像獲取時出現(xiàn)的幾何變形,它不改變像素值大小,值是在圖像平面上進(jìn)行像素的重新安排。一個幾何變換需要兩部分運算:空間變換(如平移、旋轉(zhuǎn)、鏡像),以及亮度插值算法。最近鄰插值是最簡單且最快的插值方法,即賦予點(x,y)以在離散光柵中離它最近的點g的亮度數(shù)值。雙三次插值是二維空間中最常用的插值方法,插值點(x,y)的像素灰度值通過矩形網(wǎng)格中最近的16個采樣點的加權(quán)平均得到,傳感器與機器視覺幾何變換各采樣點的權(quán)重由該點到待求插值點的距離確定。最近鄰插值的優(yōu)點在于計算量很小,算法簡單,運算速度較快;而缺點則是灰度值有明顯的不連續(xù)性,圖像質(zhì)量損失較大,會產(chǎn)生明顯的馬賽克和鋸齒現(xiàn)象。雙線性插值的優(yōu)點在于圖像質(zhì)量較高,基本克服了最近鄰插值灰度不連續(xù)的特點;缺點在于計算量稍大,程序運行時間稍長,縮放后圖像的高頻分量受到損失,圖像邊緣在一定程度上變得較為模糊。雙三次插值的優(yōu)點在于能產(chǎn)生比雙線性插值更為平滑的邊緣,計算精度很高,處理后的圖像像質(zhì)損失最少,效果最佳;缺點則是計算量最大,算法最復(fù)雜。傳感器與機器視覺圖像平滑局部預(yù)處理是指,圖片的像素由其附近一小片區(qū)域的像素值來獲得的。根據(jù)處理的目的,可以將局部預(yù)處理方法分為兩組:平滑,目的是抑制噪聲或其他小的波動,等同于在傅里葉變換中抑制高頻部分;梯度算子,基于圖像的局部導(dǎo)數(shù)。導(dǎo)數(shù)在圖像函數(shù)快速變化的位置處較大,梯度算子的目的是在圖像中顯現(xiàn)這些位置。可能會提升噪聲水平。傳感器與機器視覺在圖像上,對待處理的像素給定一個模板,該模板包括了其周圍的鄰近像素。將模板中的全體像素的均值來替代原來的像素值的方法。濾波器所選取的窗口寬度越寬,圖片越模糊。均值濾波器的缺點是會使圖像變模糊,原因是它對所有的點都是同等對待,在分?jǐn)傇肼晻r,將邊界點也分?jǐn)偭?。為了改善效果,可采用加?quán)平均的方式來構(gòu)造濾波器。均值濾波器示例圖像平滑傳感器與機器視覺中值濾波器某些噪聲(如椒鹽噪聲)的像素點比周圍的像素亮(暗)許多。如果在某個模板中,對像素進(jìn)行由小到大的排列,最亮或者最暗的點(噪聲)會被排在兩側(cè)。取模板中排在中間位置上的像素的灰度值替代待處理像素的值,就可以達(dá)到濾除噪聲的目的。K近鄰平滑濾波器在圖像上的景物之所以可以辨認(rèn)清楚是因為目標(biāo)物之間存在邊界,邊界點與噪聲點有一個共同的特點是,都具有灰度的躍變特性。經(jīng)過平滑濾波處理之后,圖像就會變得模糊。因此在進(jìn)行平滑處理時,首先判別當(dāng)前像素是否為邊界上的點;如果是,則不進(jìn)行平滑處理;如果不是,則進(jìn)行平滑處理。圖像平滑傳感器與機器視覺邊緣檢測邊緣是指圖像中灰度發(fā)生急劇變化的區(qū)域。圖像灰度的變化可以用圖像的梯度反映。邊緣檢測則是求連續(xù)圖像f(x,y)梯度的局部最大值和方向。最簡單的梯度計算方法可近似為:??(??)=??(??,??)???(??+1,??)

??(??)=??(??,??)???(??,??+1)

另一種方法則是用梯度算子來檢測邊緣傳感器與機器視覺邊緣檢測給定圖像f(m,n)在兩個正交方向H1和H2上的梯度φ1(m,n)和φ2(m,n)如下:

那么邊緣強度和方向則是:傳感器與機器視覺卷積神經(jīng)網(wǎng)絡(luò)目前,卷積神經(jīng)網(wǎng)絡(luò)(CNN)在語音分析和圖像識別領(lǐng)域備受關(guān)注,它成功訓(xùn)練多層神經(jīng)網(wǎng)絡(luò),對多維信號輸入具有優(yōu)勢。CNN已廣泛應(yīng)用于語音識別、圖像識別等大規(guī)模機器學(xué)習(xí)問題。CNN是專為處理二維數(shù)據(jù)設(shè)計的多層神經(jīng)網(wǎng)絡(luò),每層由多個二維平面組成,平面內(nèi)神經(jīng)元獨立,相鄰層神經(jīng)元連接。CNN采用權(quán)值共享結(jié)構(gòu),類似生物神經(jīng)網(wǎng)絡(luò),可調(diào)整網(wǎng)絡(luò)深度和廣度,對自然圖像有強假設(shè)。與全連接網(wǎng)絡(luò)相比,CNN具有更少的連接數(shù)和權(quán)值參數(shù),更易于訓(xùn)練。傳感器與機器視覺卷積神經(jīng)網(wǎng)絡(luò)基于卷積神經(jīng)網(wǎng)絡(luò)的圖像識別一個簡單CNN模型由兩個卷積層(C1,C2)和兩個子采樣層(S1,S2)組成。原始圖像通過卷積運算在C1層產(chǎn)生特征映射圖,S1層進(jìn)行加權(quán)平均和激活得到新特征映射圖。隨后,這些映射圖與C2層濾波器卷積,并通過S2層輸出。最終,S2層輸出向量化后輸入到傳統(tǒng)神經(jīng)網(wǎng)絡(luò)訓(xùn)練。傳感器與機器視覺卷積神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)示例卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)大致包括:卷積層、激活函數(shù)、池化層、全連接層、輸出層等。傳感器與機器視覺卷積神經(jīng)網(wǎng)絡(luò)圖像分類問題將圖像劃歸為若干個類別中的某一種,主要強調(diào)對圖像整體的語義進(jìn)行判定。AlexNet首次將深度學(xué)習(xí)應(yīng)用于大規(guī)模圖像分類,它是一個8層的卷積神經(jīng)網(wǎng)絡(luò),前5層是卷積層,后3層為全連接層,其中最后一層采用softmax進(jìn)行分類。該模型采用Rectifiedlinearunits(ReLU)來取代傳統(tǒng)的Sigmoid和tanh函數(shù)作為神經(jīng)元的非線性激活函數(shù),并提出了Dropout方法來減輕過擬合問題。Alexnet網(wǎng)絡(luò)結(jié)構(gòu)傳感器與機器視覺卷積神經(jīng)網(wǎng)絡(luò)1)輸入層:AlexNet首先使用大小為224×224×3圖像作為輸入(后改為227×227×3)。2)第一層(卷積層):包含96個大小為11×11的卷積核,卷積步長為4,因此第一層輸出大小為55×55×96;然后構(gòu)建一個核大小為3×3、步長為2的最大池化層進(jìn)行數(shù)據(jù)降采樣,進(jìn)而輸出大小為27×27×96。3)第二層(卷積層):包含256個大小為5×5卷積核,卷積步長為1,同時利用padding保證輸出尺寸不變,因此該層輸出大小為27×27×256;然后再次通過核大小為3×3、步長為2的最大池化層進(jìn)行數(shù)據(jù)降采樣,進(jìn)而輸出大小為13×13×256。傳感器與機器視覺卷積神經(jīng)網(wǎng)絡(luò)4)第三層與第四層(卷積層):均為卷積核大小為3×3、步長為1的same卷積,共包含384個卷積核,因此兩層的輸出大小為13×13×384。5)第五層(卷積層):同樣為卷積核大小為3×3、步長為1的same卷積,但包含256個卷積核,進(jìn)而輸出大小為13×13×256;在數(shù)據(jù)進(jìn)入全連接層之前再次通過一個核大小為3×3、步長為2的最大池化層進(jìn)行數(shù)據(jù)降采樣,數(shù)據(jù)大小降為6×6×256,并將數(shù)據(jù)扁平化處理展開為9216個單元。6)第六層、第七層和第八層(全連接層):全連接加上Softmax分類器輸出1000類的分類結(jié)果,有將近6千萬個參數(shù)。傳感器與機器視覺卷積神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)與殘差學(xué)習(xí)隨著卷積神經(jīng)網(wǎng)絡(luò)層數(shù)的增加,訓(xùn)練難度提高,導(dǎo)致準(zhǔn)確率飽和或下降。團隊發(fā)現(xiàn),當(dāng)網(wǎng)絡(luò)最優(yōu)時,某些層輸入輸出一致。因此,提出深層殘差網(wǎng)絡(luò)ResNet,運用殘差表示,采用Shortcutconnection確保準(zhǔn)確率隨層數(shù)增加而提高。物體檢測與深度學(xué)習(xí)模型物體檢測比圖像分類更復(fù)雜,涉及多物體定位和識別。RossGirshick等將CNN用于物體檢測,提出R-CNN模型。R-CNN使用Selectivesearch提出候選區(qū)域,輸入CNN提取特征,然后分類。R-CNN還訓(xùn)練線性回歸模型修正坐標(biāo)。FastR-CNN改進(jìn)最后一個池化層,提出RoIpooling層,允許整張圖像和候選區(qū)域坐標(biāo)一起輸入CNN,減少計算量。此外,F(xiàn)astR-CNN修改CNN的softmax層為兩個并列全連接層,用于分類和坐標(biāo)修正,設(shè)計多任務(wù)損失函數(shù)訓(xùn)練。傳感器與機器視覺03PARTTHREE設(shè)備及物料感知設(shè)備及物料感知制造資源感知制造資源主要指工裝夾具、加工設(shè)備等。對這些制造資源實時進(jìn)行信息采集、數(shù)據(jù)傳輸、數(shù)據(jù)分析等,可以使管理人員實時掌握制造資源狀態(tài),當(dāng)有異常情況發(fā)生時,可以對生產(chǎn)及時調(diào)整。也可以通過對生產(chǎn)設(shè)備數(shù)據(jù)的分析,達(dá)到最優(yōu)化配置。具體而言,在整個制造過程中涉及的制造資源按其作用及主被動關(guān)系分為以下四種:1.工件(或物料),主要包括原材料、零部件、半成品和成品等,它是制造過程中的被加工對象。2.加工設(shè)備,主要包括各種機床、加工中心等。3.搬運設(shè)備,主要包括各種托盤搬運車、叉車及自動引導(dǎo)車、機械手臂等,用于對物料、產(chǎn)品、零件等的運輸。4.存儲設(shè)備,通常用于原材料及產(chǎn)品的存放,也可表示為制造過程中的暫存區(qū)或緩沖區(qū)等。設(shè)備及物料感知制造資源感知四類制造資源在一定加工工藝和制造環(huán)境的作用下進(jìn)行加工、搬運以及存儲等活動。加工設(shè)備:加工設(shè)備是制造系統(tǒng)的核心,包括機床、加工中心等,需上下料機器人等輔助裝置。為避免搬運設(shè)備等待,配置輸入、輸出緩沖區(qū)。加工設(shè)備在工作時可能發(fā)生故障,需停機維修。搬運設(shè)備:搬運設(shè)備在制造系統(tǒng)中負(fù)責(zé)工件的移動,如托盤搬運車、叉車等。其活動包括工件搬運到緩沖區(qū)、工位間搬運、不合格品處理、成品搬運及復(fù)位等。存儲設(shè)備:存儲設(shè)備是制造系統(tǒng)中暫存工件或成品的容器或空間,分為可用和已用兩種狀態(tài)。主要活動包括工件放入和取出。制造資源感知和過程控制系統(tǒng):該系統(tǒng)位于計劃管理層和車間控制層之間,實現(xiàn)信息雙向交互。接收生產(chǎn)計劃,細(xì)化后下達(dá)生產(chǎn)指令。通過物聯(lián)網(wǎng)感知資源信息,指導(dǎo)設(shè)備操作,并實時更新相關(guān)信息至數(shù)據(jù)庫,反饋至計劃管理層。設(shè)備及物料感知制造資源感知在制造資源感知和過程控制系統(tǒng)中,感知和控制的內(nèi)容主要包括生產(chǎn)計劃執(zhí)行狀態(tài)、可視化的資源感知和制造過程控制等。1.生產(chǎn)計劃執(zhí)行狀態(tài):實時的感知并更新作業(yè)計劃的執(zhí)行狀態(tài),包括批次信息、計劃生產(chǎn)數(shù)量、已完成數(shù)量等,當(dāng)市場環(huán)境發(fā)生變化時,可對正在執(zhí)行的作業(yè)計劃進(jìn)行實時變更,以實現(xiàn)對作業(yè)計劃狀態(tài)的控制。2.可視化的資源感知和制造過程控制:實時感知獲取設(shè)備運行狀態(tài)和工件批次、編號、質(zhì)量信息等,并解析出工件的模型,實時顯示工件的狀態(tài),同時通過解析出的工件ID、工藝編號、質(zhì)量等相關(guān)信息指導(dǎo)設(shè)備對工件進(jìn)行對應(yīng)的操作。設(shè)備及物料感知制造資源感知接入實例制造資源感知接入概述制造資源感知接入涉及多種工業(yè)現(xiàn)場異構(gòu)物理設(shè)備,如機械、電氣、表面工程裝備、機器人等。其過程包括現(xiàn)場數(shù)據(jù)獲取、初步處理,與云平臺協(xié)同實現(xiàn)價值挖掘,應(yīng)用于監(jiān)控、故障診斷、工藝優(yōu)化等,旨在提高效率、降低損耗。制造資源感知接入基本框架設(shè)備及物料感知制造資源感知接入實例特點與難點主要特點與難點在于互聯(lián)互通、互操作和高可靠安全。通過設(shè)計邊緣智能網(wǎng)關(guān)支持多種通信協(xié)議,構(gòu)建資源接入信息模型,實現(xiàn)互操作。從硬件與軟件層面考慮可靠性與安全性。設(shè)備資源接入模型設(shè)計結(jié)合應(yīng)用場景,設(shè)計設(shè)備資源接入模型,提供全面數(shù)據(jù)和有效語義,支持后續(xù)數(shù)據(jù)分析與應(yīng)用。模型包括對象、變量、方法和視圖,復(fù)雜度由設(shè)備決定。通信協(xié)議與安全防護為支持各類工業(yè)智能應(yīng)用,需多種通信協(xié)議支持和安全防護技術(shù)。包括現(xiàn)場總線、硬件端口、無線通信、網(wǎng)絡(luò)通信協(xié)議支持,以及防火墻、身份認(rèn)證等安全防護措施。設(shè)備及物料感知物料狀態(tài)信息感知在生產(chǎn)過程中,物料是制造的基礎(chǔ)。對車間內(nèi)物料信息進(jìn)行感知分析,實現(xiàn)物料來源、去向、庫存等的透明化,可以有效避免因材料不足引起的生產(chǎn)延誤。在制造過程中,物料大多由專門的系統(tǒng)進(jìn)行管理,稱為物料輸送管理系統(tǒng)。近年來,先進(jìn)的物料輸送系統(tǒng)在我國得到了廣泛的應(yīng)用。但無論是技術(shù)水平還是應(yīng)用程度,與國外的先進(jìn)技術(shù)相比,我國物料輸送系統(tǒng)的發(fā)展,還不能滿足現(xiàn)階段物流的要求,不足之處主要體現(xiàn)在以下幾個方面:1)我國處于物料輸送系統(tǒng)發(fā)展的初級階段,缺少行業(yè)標(biāo)準(zhǔn),導(dǎo)致各種物料輸送設(shè)備標(biāo)準(zhǔn)不統(tǒng)一,導(dǎo)致設(shè)備之間無法順暢的感知互聯(lián);2)企業(yè)缺乏對底層設(shè)備的關(guān)鍵數(shù)據(jù)信息采集與監(jiān)控,進(jìn)而缺乏對整個物料輸送系統(tǒng)性能和效率達(dá)到最優(yōu)的綜合考慮;3)多數(shù)企業(yè)選擇物料輸送設(shè)備時,將價格作為首要因素,忽視對輸送設(shè)備的智能化改造;4)多數(shù)企業(yè)沒有搭建起多種異構(gòu)網(wǎng)絡(luò)的互聯(lián)體系,使得整個物料輸送系統(tǒng)的綜合調(diào)度管理不夠數(shù)字化、智能化。設(shè)備及物料感知物料狀態(tài)信息感知在現(xiàn)今的智能物料輸送系統(tǒng)中,要實現(xiàn)各類設(shè)備能夠互聯(lián)互通互操作,必須在一個完整的物聯(lián)網(wǎng)架構(gòu)中完成,主要包含三個層次:底層是用來感知信息、獲取數(shù)據(jù)的感知層;第二層是進(jìn)行數(shù)據(jù)傳輸?shù)木W(wǎng)絡(luò)層,通過無線局域網(wǎng)、3G技術(shù)、4G技術(shù)等移動通信網(wǎng)將獲取得到的信息傳遞給應(yīng)用層,同時將應(yīng)用層的指令信息傳達(dá)給感知層;最上層則是完成控制決策、數(shù)據(jù)可視化的應(yīng)用層,通過與企業(yè)的具體應(yīng)用場合的深度融合,結(jié)合企業(yè)資源管理系統(tǒng)以及制造執(zhí)行系統(tǒng)、云計算等技術(shù),來完成設(shè)備間的智能感知互聯(lián)。設(shè)備及物料感知物料狀態(tài)信息感知1.智能終端的大量使用,使得工作人員以及相關(guān)設(shè)備狀態(tài)能夠及時獲取,這也是企業(yè)實現(xiàn)MES以及ERP系統(tǒng)重要的一環(huán);2.底層設(shè)備智能化,不僅僅包含自動化的生產(chǎn),同時包含設(shè)備運行狀態(tài)相關(guān)數(shù)據(jù)的采集與處理,具備豐富的感知,并且能夠?qū)崿F(xiàn)初步的自適應(yīng)生產(chǎn)與診斷能力;3.具備大量的智能感知單元,如智能電機運行參數(shù)如溫度、轉(zhuǎn)矩、轉(zhuǎn)速、電流等重要參數(shù)的獲??;4.擁有廣泛的無線傳感網(wǎng)絡(luò)(WSN),傳感網(wǎng)絡(luò)中的各傳感節(jié)點具備自組網(wǎng)功能,能夠?qū)⒏鱾€生產(chǎn)環(huán)節(jié)的大量相關(guān)數(shù)據(jù)進(jìn)行大數(shù)據(jù)分析與處理,從而達(dá)到對整個智能物料輸送系統(tǒng)物料輸送系統(tǒng)作為自動化生產(chǎn)線必不可少的一個環(huán)節(jié),主要包含輸送線、自動化生產(chǎn)設(shè)備、移載機構(gòu)、物流小車(AGV)、機器人、作業(yè)人員等部分組成。整個生產(chǎn)任務(wù)的完成都必須建立在高效、穩(wěn)定且可靠的物料輸送系統(tǒng)的基礎(chǔ)上,針對傳統(tǒng)物料輸送系統(tǒng)的無法滿足當(dāng)今工廠多產(chǎn)量、多品種的產(chǎn)品生產(chǎn)需要,因此,研制一套智能物料輸送系統(tǒng)迫在眉睫,其智能性主要體現(xiàn)在:設(shè)備及物料感知物料狀態(tài)信息感知面向智能物料輸送系統(tǒng)的諸多信息中,基于物聯(lián)網(wǎng)的現(xiàn)場實時數(shù)據(jù)采集實現(xiàn)智能化生產(chǎn)的重要組成部分,不僅僅利用底層的傳感器感知單元來采集生產(chǎn)現(xiàn)場數(shù)據(jù),同時通過CAD、CAM、CAPP等生產(chǎn)制造信息系統(tǒng)來獲取一線的生產(chǎn)制造數(shù)據(jù),并將兩者數(shù)據(jù)通過一系列的互聯(lián)技術(shù)達(dá)到上層對底層設(shè)備、人員、物料等相關(guān)信息的監(jiān)控。目前,針對國內(nèi)外的總體數(shù)據(jù)采集技術(shù)而言,在采集系統(tǒng)實時工況信息以及設(shè)備運行信息的方式上主要可分為三種類別:傳感器檢測與采集技術(shù)、自動識別技術(shù)以及自動化設(shè)備標(biāo)準(zhǔn)化接口采集技術(shù)。設(shè)備及物料感知傳感器檢測與采集技術(shù)在實際的物料輸送系統(tǒng)中,傳感器的應(yīng)用無處不在,無論是對于工位點工件有無的檢測,還是距離工件遠(yuǎn)近的檢測等,都發(fā)揮著重要作用。一般而言,作為評價傳感器性能好壞的指標(biāo)主要包含兩方面:采樣精度與采樣速度,其中表示采樣精度的有傳感器的線性度、靈敏度、分辨力三個層面,線性度表征了傳感器實際測量效果與理論效果的誤差表現(xiàn);靈敏度是指輸出量與輸入量的量綱之比;分辨力是指感受到外部測量量最小變化的能力。一般而言,由于物料輸送系統(tǒng)線路較長、設(shè)備布局較為分散,因此采用集散型多傳感器數(shù)據(jù)采集系統(tǒng),不僅結(jié)構(gòu)簡單、成本低、而且對環(huán)境要求不高,易組成系統(tǒng)。設(shè)備及物料感知傳感器檢測與采集技術(shù)傳感器數(shù)據(jù)采集系統(tǒng)結(jié)構(gòu)設(shè)備及物料感知自動識別技術(shù)自動識別技術(shù)是利用一定的識別裝置,通過識別裝置與物品之間的接近活動,進(jìn)而自動獲取相關(guān)信息,并將這些信息提供給后臺計算機處理的一項技術(shù)。一般而言,自動識別技術(shù)主要包括條碼識別技術(shù)、射頻識別技術(shù)、光學(xué)字符識別技術(shù)、磁卡及智能卡識別技術(shù)、生物識別技術(shù)、語音識別與視覺識別技術(shù)等,如下圖所示。這些技術(shù)都是通過嵌入式智能終端通過各種光電感應(yīng)、磁感應(yīng)以及人工智能技術(shù)來完成相應(yīng)的自動識別功能。面對智能物料輸送系統(tǒng),利用自動識別技術(shù)確實能夠較好的將員工信息、物料信息、加工信息、裝配信息等采集起來,獲取當(dāng)前生產(chǎn)狀態(tài)下的實時數(shù)據(jù),進(jìn)一步提高整個系統(tǒng)的感知能力。設(shè)備及物料感知自動識別技術(shù)自動識別技術(shù)分類面對智能物料輸送系統(tǒng),利用自動識別技術(shù)確實能夠較好的將員工信息、物料信息、加工信息、裝配信息等采集起來,獲取當(dāng)前生產(chǎn)狀態(tài)下的實時數(shù)據(jù),進(jìn)一步提高整個系統(tǒng)的感知能力。設(shè)備及物料感知自動化設(shè)備標(biāo)準(zhǔn)化接口采集技術(shù)在整個物料輸送系統(tǒng)中,工業(yè)自動化設(shè)備提供標(biāo)準(zhǔn)接口,如RS232、RS485、CAN、Ethernet、OPC、IO信號,用戶可直接采集數(shù)據(jù)。OPC作為國際通用通訊規(guī)范,解決了設(shè)備間互聯(lián)互通問題,采用C/S模式,方便系統(tǒng)集成與二次開發(fā)。多數(shù)設(shè)備留有此接口,連接后可實現(xiàn)數(shù)據(jù)采集。大型系統(tǒng)中,觸摸屏等顯示設(shè)備通過人工輸入完成數(shù)據(jù)交互,這部分?jǐn)?shù)據(jù)也可采集。設(shè)備及物料感知智能物料輸送感知系統(tǒng)的實例設(shè)計多AGV系統(tǒng)實現(xiàn)RFID信息感知和多源信息綜合調(diào)度,通過Zigbee網(wǎng)絡(luò)感知AGV狀態(tài),支持視覺和磁導(dǎo)引巡航,提高系統(tǒng)運作效率。智能摩擦輸送線由16個獨立電機驅(qū)動單元組成,通過無線組網(wǎng)上傳狀態(tài)信息,OPC和CAN總線控制多條懸掛線作業(yè),閱讀器讀取電子標(biāo)簽信息,控制中心實現(xiàn)智能化管控和故障預(yù)判。EMS輸送線能自主充電,移動靈活,適用于空間快速轉(zhuǎn)移。視覺移載平臺通過視覺定位和傳感器感知托盤位置、物料信息,實現(xiàn)AGV與空中輸送線的中間傳遞。工件檢測/裝配設(shè)備通過智能傳感器和RFID檢測產(chǎn)品質(zhì)量,選擇合適的質(zhì)量檢測標(biāo)準(zhǔn)。網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)實時整體化監(jiān)控物料輸送過程,結(jié)合現(xiàn)場數(shù)據(jù),提高智能物料輸送系統(tǒng)的感知管控能力。以實驗室設(shè)施為基礎(chǔ),整合多AGV輸送系統(tǒng)、智能摩擦輸送線、EMS輸送線、視覺移載平臺、工件檢測/裝配設(shè)備、網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng),構(gòu)建智能化物料輸送感知系統(tǒng)。04PARTFOUR環(huán)境感知環(huán)境感知人類社會的生產(chǎn)生活離不開對周圍環(huán)境參數(shù)信息的獲取和利用。環(huán)境中存在著大量人類感興趣的信息,比如溫度、濕度、氣體組分濃度、加速度、振動、磁場、光照強度等典型參數(shù),而對這些環(huán)境量的感知是信息獲取和利用的重要方式與前提。在制造系統(tǒng)中同樣如此。因此,環(huán)境感知系統(tǒng)應(yīng)運而生,它利用各類感知傳感器將環(huán)境中的目標(biāo)參數(shù)轉(zhuǎn)化為儀器設(shè)備可以識別測量的電信號,從而對環(huán)境信息進(jìn)行有效利用。環(huán)境感知環(huán)境感知智能微系統(tǒng)環(huán)境感知系統(tǒng)常用于資源受限環(huán)境,要求微型化、低功耗、低成本和智能化。MEMS傳感器陣列作為關(guān)鍵單元,其準(zhǔn)確性和穩(wěn)定性至關(guān)重要。但環(huán)境因素如化學(xué)反應(yīng)、外部干擾等易影響敏感特性,導(dǎo)致基線漂移或故障,影響系統(tǒng)性能。由于MEMS傳感器陣列的小型化和集成化特點,以及惡劣環(huán)境下使用故障概率較高。因此,采用包含故障檢測、隔離、恢復(fù)和漂移補償功能的自檢測自校正技術(shù),實時在線監(jiān)測MEMS傳感器陣列工作狀態(tài),并進(jìn)行故障或漂移校正是必要的。環(huán)境感知環(huán)境感知系統(tǒng)自檢測環(huán)境感知智能微系統(tǒng)利用MEMS氣體傳感器陣列來檢測氣體組分和濃度,為氣體識別和濃度預(yù)測提供數(shù)據(jù)。但MEMS氣體傳感器陣列可能因環(huán)境干擾或人為因素出現(xiàn)故障,影響檢測準(zhǔn)確性。為此,建立故障檢測模型是關(guān)鍵,該模型通過分析正常工作狀態(tài)下的傳感器數(shù)據(jù)來訓(xùn)練,以便快速識別異常。在數(shù)據(jù)采集過程中,電壓波動和人為干擾可能導(dǎo)致數(shù)據(jù)集中出現(xiàn)異常和噪聲。因此,實施數(shù)據(jù)預(yù)處理至關(guān)重要,它能夠提高數(shù)據(jù)質(zhì)量,確保模型訓(xùn)練使用的數(shù)據(jù)顯示真實應(yīng)用情況,從而提升故障檢測模型的性能和可靠性。環(huán)境感知環(huán)境感知系統(tǒng)自檢測

環(huán)境感知環(huán)境感知系統(tǒng)自檢測在傳感器故障檢測中,機器學(xué)習(xí)方法如SVM、PCA、KNN和ANN各有優(yōu)勢和局限。SVM能準(zhǔn)確檢測異常但不適合自檢測自校正。KNN在搜索鄰居節(jié)點時存儲需求大,且難以實現(xiàn)實時檢測。ANN計算復(fù)雜度高,需要多個模型。相比之下,PCA通過簡化統(tǒng)計量進(jìn)行故障檢測,計算簡單、速度快,且易于集成到自校正流程中。PCA本身是一種降維技術(shù),能將多維變量轉(zhuǎn)換為低維不相關(guān)變量,同時保留原始數(shù)據(jù)的主要信息。05PARTFIVE人員感知人員感知人員行為感知概述人類行為涵蓋身體、心理和社會活動能力,涉及生命全階段的發(fā)展。在人機交互中,人員行為識別通過技術(shù)手段識別和理解人類與機器或系統(tǒng)交互時的行為和意圖。這涉及分析用戶與機器人或界面的互動,以提高系統(tǒng)響應(yīng)性和適應(yīng)性,增強用戶友好性和交互效率。目前,研究人員采用傳感器和數(shù)據(jù)分析技術(shù),如機器視覺、3D傳感器、邊緣計算和多模態(tài)數(shù)據(jù)融合,以有效識別和理解人員行為。人員感知機器視覺機器視覺技術(shù)結(jié)合攝像頭和圖像處理算法分析人類行為。通過深度學(xué)習(xí)算法,實時識別人員行為,如姿態(tài)、手勢、面部表情。應(yīng)用場景包括監(jiān)控系統(tǒng)異常檢測、自動駕駛行人和車輛識別。3D傳感器如Kinect和LiDAR,捕捉三維空間中的人類行為。通過光信號構(gòu)建環(huán)境和人物的三維模型,在VR和AR中有重要應(yīng)用,如VR游戲中捕捉玩家全身動作。邊緣計算邊緣計算在數(shù)據(jù)源附近處理數(shù)據(jù),減少傳輸延遲,提高實時處理效率。在行為感知中,邊緣計算快速分析傳感器數(shù)據(jù)并實時響應(yīng),如智能家居系統(tǒng)監(jiān)測家庭成員行為并自動調(diào)整家電。多模態(tài)數(shù)據(jù)融合多模態(tài)數(shù)據(jù)融合整合不同類型傳感器數(shù)據(jù),提高行為識別準(zhǔn)確性和魯棒性。例如,結(jié)合視覺、音頻、壓力傳感器數(shù)據(jù),系統(tǒng)更全面地理解和識別人的行為和意圖。人員行為感知概述協(xié)作機器人與人機協(xié)作裝配近年來,制造業(yè)中協(xié)作機器人出貨量大幅增長。2020年全球出貨量僅2,000余臺,預(yù)計2026年將超47,000臺。增長歸因于其高度精確性和通過機器學(xué)習(xí)提升性能的能力。協(xié)作機器人支持工人執(zhí)行體力、認(rèn)知和危險操作,如減輕工作量、減輕精神壓力、處理危險材料。其功能和設(shè)計日益依賴對人類行為的精確感知,這一發(fā)展推動銷量增長。具備感知能力的協(xié)作機器人可在無安全柵欄環(huán)境中與工人直接合作,改變操作模式。集成先進(jìn)視覺系統(tǒng)和傳感器,實時監(jiān)測工人動作和位置,提高操作靈活性和生產(chǎn)效率,同時增強工作環(huán)境安全性,使機器人更有效地支持人類。人員感知人機工程學(xué)的發(fā)展人員感知人機環(huán)境交互科學(xué)旨在實現(xiàn)人與機器、環(huán)境的和諧結(jié)合,使設(shè)計適應(yīng)人的生理和心理特點,提高生產(chǎn)效率、安全、健康和舒適度。此技術(shù)不僅增強工作環(huán)境的安全性,也符合人體工程學(xué)原則。人員行為感知技術(shù)通過感知人員狀態(tài)調(diào)整協(xié)作機器人的協(xié)作方式。研究采用Kinect攝像頭捕捉工人關(guān)節(jié)角度,評估整體人體工程學(xué)狀態(tài)(REBA)。檢測到不良姿勢后,通過算法實時調(diào)整機器人位置,為人類提供最佳姿勢。該方法優(yōu)化了工人姿態(tài),降低了肌肉骨骼疾病風(fēng)險?;谌藛T行為感知和人體工程學(xué)的協(xié)作機器人末端位置優(yōu)化人員行為感知與安全監(jiān)控在高風(fēng)險制造環(huán)境中,采用先進(jìn)的圖像識別和傳感技術(shù)對工人的行為和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論