




河北省衡水市第十三中學2024年高三下學期適應性月考卷(一)數(shù)學試題.doc 免費下載
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省衡水市第十三中學2024年高三下學期適應性月考卷(一)數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-32.已知為坐標原點,角的終邊經(jīng)過點且,則()A. B. C. D.3.若時,,則的取值范圍為()A. B. C. D.4.我國古代數(shù)學著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1005.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.6.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}7.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.8.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)9.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.10.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.11.已知復數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣212.在三棱錐中,,且分別是棱,的中點,下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,常數(shù)項為______;系數(shù)最大的項是______.14.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領(lǐng)養(yǎng)了此種盆栽植物10株,設(shè)為其中成活的株數(shù),若的方差,,則________.15.若變量,滿足約束條件,則的最大值為__________.16.在中,為定長,,若的面積的最大值為,則邊的長為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.18.(12分)設(shè)橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.19.(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項和為,且,(,).(1)求數(shù)列的通項公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.20.(12分)在直角坐標系中,已知圓,以原點為極點,x軸正半軸為極軸建立極坐標系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標方程;(2)過原點作兩條互相垂直的直線,其中與圓M交于O,A兩點,與圓M交于O,B兩點,求面積的最大值.21.(12分)已知等比數(shù)列是遞增數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.22.(10分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區(qū)等等.(1)為了解“五·一”勞動節(jié)當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動節(jié)當日客流量(單位:萬人)都大于1.將每年勞動節(jié)當日客流量數(shù)據(jù)分成3個區(qū)間整理得表:勞動節(jié)當日客流量頻數(shù)(年)244以這10年的數(shù)據(jù)資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動節(jié)當日客流量型游船最多使用量123若某艘型游船在勞動節(jié)當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節(jié)當日被投入?yún)s不被使用,則游船中心當日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節(jié)當日獲得的總利潤,的數(shù)學期望越大游船中心在勞動節(jié)當日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當日應投入多少艘型游船才能使其當日獲得的總利潤最大?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【點睛】本題主要考查導數(shù)的幾何意義,意在考查學生對這些知識的理解掌握水平.2、C【解析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【點睛】本題考查三角函數(shù)定義的應用和二倍角的正弦公式,考查計算能力.3、D【解析】
由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數(shù)的綜合應用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.4、B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.5、B【解析】
首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應用,余弦函數(shù)的性質(zhì)的應用,屬于中檔題.6、D【解析】
解一元二次不等式化簡集合,再由集合的交集運算可得選項.【詳解】因為集合,故選:D.【點睛】本題考查集合的交集運算,屬于基礎(chǔ)題.7、C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.8、C【解析】
利用導數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增;在同一坐標系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.9、A【解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數(shù),再求出四個面中任選2個的方法數(shù),從而可計算概率.【詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個數(shù).10、B【解析】
利用古典概型概率計算方法分析出符合題意的基本事件個數(shù),結(jié)合組合數(shù)的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數(shù)的計算,考查學生分析問題的能力,難度較易.11、D【解析】
化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎(chǔ)題.12、D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出二項展開式的通項,令指數(shù)為零,求出參數(shù)的值,代入可得出展開式中的常數(shù)項;求出項的系數(shù),利用作商法可求出系數(shù)最大的項.【詳解】的展開式的通項為,令,得,所以,展開式中的常數(shù)項為;令,令,即,解得,,,因此,展開式中系數(shù)最大的項為.故答案為:;.【點睛】本題考查二項展開式中常數(shù)項的求解,同時也考查了系數(shù)最大項的求解,涉及展開式通項的應用,考查分析問題和解決問題的能力,屬于中等題.14、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.15、【解析】
根據(jù)約束條件可以畫出可行域,從而將問題轉(zhuǎn)化為直線在軸截距最大的問題的求解,通過數(shù)形結(jié)合的方式可確定過時,取最大值,代入可求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:將化為,則最大時,直線在軸截距最大;由直線平移可知,當過時,在軸截距最大,由得:,.故答案為:.【點睛】本題考查線性規(guī)劃中最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.16、【解析】
設(shè),以為原點,為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進一步求出的值即為所求.【詳解】解:設(shè),以為原點,為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【點睛】本題考查向量模的計算,建系是關(guān)鍵,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當?shù)男甭蕿闀r和斜率不為時的情況列出相應式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點在軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當?shù)男甭蕿闀r,,,于是,到的距離為,直線與圓相切.當?shù)男甭什粸闀r,設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當且僅當?shù)忍柍闪?,所以面積的最小值為1.【點睛】本題主要考查直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查化歸與轉(zhuǎn)化思想,屬于難題.18、(1);(2)證明見解析,.【解析】
(1)根據(jù)離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設(shè),,聯(lián)立方程組利用韋達定理得到,,根據(jù)化簡得到,代入直線方程得到答案.【詳解】(1)由題意可得,解得,,則橢圓的標準方程是.(2)當直線的斜率為0時,直線與直線關(guān)于軸對稱,則直線與直線的斜率之和為零,與題設(shè)條件矛盾,故直線的斜率不為0.設(shè),,直線的方程為聯(lián)立,整理得則,.因為直線與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點.【點睛】本題考查了橢圓的標準方程,直線過定點問題,計算出是解題的關(guān)鍵,意在考查學生的計算能力和轉(zhuǎn)化能力.19、(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項公式為,滿足題設(shè)【解析】
(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項公式,,設(shè)出等差數(shù)列,再根據(jù)不等關(guān)系來算出的首項和公差即可.【詳解】(1)設(shè)等比數(shù)列的公比為q,因為,,所以,解得.所以數(shù)列的通項公式為:.(2)由(1)得,當,時,可得①,②②①得,,則有,即,,.因為,由①得,,所以,所以,.所以數(shù)列是以為首項,1為公差的等差數(shù)列.(3)由(2)得,所以,.假設(shè)存在等差數(shù)列,其通項,使得對任意,都有,即對任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當,時,,這與矛盾.(ii)若,則當,時,.而,,所以.故,這與矛盾.所以.其次證明:當時,.因為,所以在上單調(diào)遞增,所以,當時,.所以當,時,.再次證明.(iii)若時,則當,,,,這與③矛盾.(iv)若時,同(i)可得矛盾.所以.當時,因為,,所以對任意,都有.所以,.綜上,存在唯一的等差數(shù)列,其通項公式為,滿足題設(shè).【點睛】本題考查求等比數(shù)列通項公式,證明等差數(shù)列,以及數(shù)列中的探索性問題,是一道數(shù)列綜合題,考查學生的分析,推理能力.20、(1),(2)【解析】
先求出,再求圓的半徑和極坐標方程;(2)設(shè)求出,,再求出得解.【詳解】(1)將化成直角坐標方程,得則,故,則圓,即,所以圓M的半徑為.將圓M的方程化成極坐標方程,得.即圓M的極坐標方程為.(2)設(shè),則,用代替.可得,【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 共用墻合同范本
- 兼職防疫保安合同范本
- 出售吊車合同范例
- 加裝電梯托管合同范本
- 光伏銷售質(zhì)保合同范本
- 單位二手房交易合同范本
- 勞動合同范例 河南
- 買賣交易正規(guī)合同范本
- 個人買賣住房合同范本
- 人保壽險合同范本
- 陜西省榆林市2023-2024學年高二上學期1月期末語文試題 (解析版)
- 巖石破碎型泥水平衡頂管施工工法
- 無光纖傳輸技術(shù)Er:YAG激光口腔臨床應用規(guī)范
- 醫(yī)療信息共享與互聯(lián)網(wǎng)醫(yī)療管理制度
- 人教版高中英語必修二詞匯表(默寫版)
- 汽車電器線束DFMEA范例
- 船模航模車模社團教案
- 【基于上市公司數(shù)據(jù)的康芝藥業(yè)盈利能力探析(定量論文)11000字】
- 幼兒園小班學情分析案例及分析
- 2024年社區(qū)工作者考試題庫及答案
- 2024年義務(wù)教師考試招聘考試試題及答案
評論
0/150
提交評論