版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Incollaborationwith
MITsloanManagementReview
〉BIGIDEAS
November2024
Learning
toManage
Uncertainty,WithAI
bySamRansbotham,DavidKiron,ShervinKhodabandeh,MichaelChu,andLeonidZhukhov
AUTHORS
SamRansbotham
isaprofessorofanalyticsattheCarrollSchoolofManagementatBostonCollege,aswellasguesteditorforMITSloanManagementReview’sArtificialIntelligenceandBusinessStrategyBigIdeasinitiative.
DavidKironistheeditorialdirector,research,ofMITSloanManagementReviewandprogramleadforitsBigIdeasresearchinitiatives.
ShervinKhodabandehisaseniorpartnerandmanagingdirectoratBostonConsultingGroup(BCG)andthecoleaderofitsAIbusiness
inNorthAmerica.HeisaleaderinBCGX
andhasover20yearsofexperiencedriving
businessimpactfromAIanddigital.Hecanbecontactedat
shervin@
.
MichaelChuisavicepresidentofdatascienceatBCG,wherehefocusesonapplyingAIandmachinelearningtobusinessproblemsin
commercialfunctions,includingoptimizingpricing,promotions,sales,andmarketing.Hecanbereachedat
chu.michael@
.
LeonidZhukhovisavicepresidentofdatascienceatBCGandleadstheTech&Biz
LabattheBCGHendersonInstitute.He
leadsthedesignandbuildofAIandmachinelearningsolutionsforBCGclientsacross
arangeofsectors.Hecanbereachedat
zhukov.leonid@
.
CONTRIBUTORS
Fran?oisCandelon,ToddFitz,KevinFoley,SarahJohnson,MicheleLeeDeFilippo,MeenalPore,NamrataRajagopal,AllisonRyder,BarbaraSpindel,andDavidZuluagaMartínez
TheresearchandanalysisforthisreportwasconductedunderthedirectionoftheauthorsaspartofanMITSloanManagementReviewresearchinitiativeincollaborationwithandsponsoredbyBostonConsultingGroup.
Tocitethisreport,pleaseuse:
S.Ransbotham,D.Kiron,S.Khodabandeh,M.Chu,andL.Zhukov,“LearningtoManageUncertainty,WithAI,”MITSloanManagementReviewandBostonConsultingGroup,November2024.
SUPPORTINGSPONSORS
BCG
HENDERSONINSTITUTE
BCG》《
Copyright?MassachusettsInstituteofTechnology,2024.Allrightsreserved.REPRINT#:66262
CONTENTS
1
UncertaintyAbounds
2
CombiningOrganizationalLearningandAI-specific
LearningLeadstoAugmentedLearning
4
AugmentedLearnersAreBetterPreparedfor
ManyTypesofUncertainty
8
ThreeWaystoEnhanceOrganizational
LearningWithAI
11
DevelopingAugmentedLearningCapabilities
13
LearningWithAIIsKeytoNavigatingUncertainty
14
Appendix:TheStateofAIinBusiness
UncertaintyAbounds
Uncertaintyisallabouttheunknown.Thelessanorgani-zationknows,thegreateritsuncertaintyandthelessableitistomanageresourceseffectively.Managinguncertainty,therefore,requireslearning.Companiesneedtolearnmore,andmorequickly,tomanageuncertainty.
Addressinguncertaintyconstitutesapressingchallengeforleadership,especiallytoday,whengeopoliticaltensions,fast-movingconsumerpreferences,talentdisruptions,shiftingregulations,andrapidlyevolvingtechnologiescomplicatethebusinessenvironment.Companiesneedbettertoolsandperspectivesforlearningtomanageuncertaintyarisingfromtheseandotherbusinessdisrup-tions.Ourresearchfindsthatamajorsourceofuncertainty,artificialintelligence,isalsocriticaltomeetingthischal-lenge.Specifically:
CompaniesthatboosttheirlearningcapabilitieswithAIaresignificantlybetterequippedtohandleuncertaintyfromtechnological,regulatory,andtalent-relateddis-ruptionscomparedwithcompaniesthathavelimitedlearningcapabilities.
TheEstéeLauderCompanies(ELC)offersacaseinpoint.Thecosmeticscompanyhasastrategicneedtoanticipateconsumertrendsaheadofitscompetitors.Inearliertimes,consumerpreferencesmighthaveshiftedseasonally.Now,preferencesarelesscertain;shiftshappenmorequicklyduetosocialmediaanddigitalinfluencers.Fashiontrendscanchangebytheweek.Ifthecolorpeachsuddenlycapturesthepublic’sinterest,thecompanyneedstodiscernthattrendasquicklyaspossible.ItusesAItodetectandrap-idlyrespondtoconsumertrends.SowmyaGottipati,vicepresidentofglobalsupplychaintechnologyatELC,reportsthatthecompany,whichcarriesproductsacrossmorethan20brandsand“hundredsofdifferentshades,”usesfuzzymatchingtofigureoutwhichproductscanmeetthedemandanddelightconsumers.“WearelookingtoAItodiscoverconsumertrendsandthenmatchupourexistingproductstothetrendssothatwecanrepackagethemandpositiontheminthemarketforthattrend,”Gottipatiexplains.ELCusesAItodetectsuddenchangesandhaveamarketresponsereadysoitcanredeployinventoryandsupplychainpro-cessestomeetdemandefficiently.Companiescan’tcontrolthechangesbutcanuseAItomanagetheirresponses.
ELCisnotalone:Thecompanyisamongthe15%oforga-nizationsthatintegrateAIintotheirlearningcapabilities.Theseorganizations—whatwerefertoasAugmentedLearners—are1.6timesmorelikelythanthosewithlim-itedlearningcapabilitiestomanagevariousenvironmentalandcompany-specificuncertainties,includingunexpectedtechnological,regulatory,andworkforcechanges.Thesecompaniesaretwiceaslikelytobepreparedtomanagetalent-relateddisruptionscomparedwithorganizationsthathavelimitedlearningcapabilities.What’smore,theseorganizationsare60%-80%morelikelytobeeffectiveatmanaginguncertaintiesintheirexternalenvironmentsthanLimitedLearners—companieswithlimitedlearningcapabilities.Bydoingso,theyreapadvantageswithAIwellbeyonddirectfinancialbenefits.
Basedonaglobalsurveyof3,467respondentsandinter-viewswithnineexecutives,ourresearchquantitativelyandqualitativelyestablishesarelationshipbetweenorganiza-tionallearning,learningwithAI,andtheabilitytomanagerapidlychangingbusinessenvironments.Organizationallearningitselfhaslongbeenassociatedwithimprovedper-formance.IntegratingAIwithanorganization’slearningcapabilitiessignificantlyimprovescorporateresponsestouncertaintiesfromtalentmobility,newtechnology,andrelatedregulations.ThisreportdefinesanAI-enhancedorganizationallearningcapability(augmentedlearning),explainsitsuseinreducingtheconsiderableuncertaintymanagersfacetoday,andofferskeytakeawaysforexploit-ingthesenewabilities.
Companiesneedtolearnmore,andmorequickly,tomanageuncertainty.
1
LearningtoManageUncertainty,WithAI
ABOUTTHERESEARCH
Thisreportpresentsfindingsfromtheeighthannualglobalresearchstudyonartificialintelligenceandbusi-nessstrategybyMITSloanManagementReviewandBostonConsultingGroup.Inspring2024,wefieldedaglobalsurveyandsubsequentlyanalyzedrecordsfrom3,467respondentsrepresentingmorethan21industriesand136countries.WealsointerviewednineexecutivesleadingAIinitiativesinabroadrangeofcompaniesandindustries,includingfinancialservices,technology,retail,travelandtransportation,andhealthcare.
Ourresearchconnectsorganizationallearning,learningwithAI,andtheabilitytomanagerapidlychangingenviron-ments.ThisreportdefinesanAI-enhancedorganizationallearningcapability,explainsitsuseinreducingseveraltypesofuncertaintymanagersfacetoday,andofferskeyleader-shiptakeawaysforexploitingthesenewabilities.
Toassesswhetherorganizationshave“high”or“l(fā)ow”organizationalandAI-specificlearningcapabilities,weanalyzedsurveyresponsestothesestatementsusinganagree-disagreeLikertscale:
?Myorganizationlearnsthroughexperiments.(organi-zationallearning)
?Myorganizationtoleratesfailuresinexperiments.(organizationallearning)
?Myorganizationlearnsfrompostmortemsonbothsuccessfulandfailedprojects.(organizationallearning)
?Myorganizationcodifiesitslearningfrominitiatives.(organizationallearning)
?Myorganizationgathersandsharesinformationthatemployeeslearn.(organizationallearning)
?Myorganization’suseofAIleadstonewlearning.(AI-specificlearning)
?MyorganizationusesAItolearnfromperformance.(AI-specificlearning)
?MyorganizationbuildsAIsolutionswithhumanfeed-backloops.(AI-specificlearning)
?EmployeesinmyorganizationlearnfromAIsolutions.(AI-specificlearning)
Wethengroupedrespondentsintofourcategories:LimitedLearners,OrganizationalLearners,AI-specificLearners,andAugmentedLearners.
(SeeFigure2,page3
FortheSebreakdownS.)
2
MITSLOANMANAGEMENTREVIEW?BCG
CombiningOrganizationalLearningandAI-specificLearningLeadstoAugmentedLearning
Organizationallearningisanorganization’scapabilitytochangeitsknowledgethroughexperience.1Organizationsthatlearnfrommistakes,toleratefailure,capturebestpractices,andsupportnewideashaveanadvantageoverorganizationsthatdon’t:Theylearntogetbetter.Thosethatstruggletolearnwillstruggletonavigateincreasinguncertainties.Extensivepastresearchdemonstratesthebenefitsofgeneralorganizationallearning.
Generalorganizationallearningcapabilitiesdon’tneces-sarilydependonAI;organizationscanhavestrongorgani-zationallearningcapabilitieswithoutusingthetechnology.Conversely,organizationscanuseAItolearneveniftheydon’totherwisehavestrongorganizationallearningcapa-bilities.ManagerscanlearnfromgenerativeAItools,useAItodeepentheirunderstandingofperformance,anditer-atewithAItodevelopnewinsightsandprocesses.TheseindividuallearningexperiencescreatevaluefromAIbutmaynotconstituteanorganizationallearningcapability.
Ourresearchfindsthatorganizationsthatcombineorgani-zationallearningwithAI-specificlearning—AugmentedLearners—outperformorganizationsthatemployeitherapproachinisolation.AsbusinessesadoptAIandembracesuccessivelymorepowerfulAItoolsinvariouscontexts,theyhavenewopportunitiestostrengthentheirlearningcapa-bilities—forbothhumanworkersandtheirmachines.Our
priorresearch,“ExpandingAI’sImpactWithOrganizational
Learning
,”foundthatorganizationswithsuperiorlearningcapabilitiesaremorelikelytoobtainsignificantfinancialben-efitsfromtheirAIuse.2Inourlatestresearch,wefindthatthereverseisalsotrue:UsingAIcanimproveorganizationallearningcapabilities,andtheselearningimprovementsaretiedtonotonlyenhancedfinancialresultsbutalsotheabilitytomanagestrategy-relateduncertainties.
AssessingLearningCapabilities
Oursurveyinstrumentmeasuredeachenterprise’sorga-nizationallearningcapabilityusingfivequestions.WealsoassessedhowindividualsandsystemslearnwithAIthroughadifferentsetoffourquestions.Together,thesequestionsprobeseveralaspectsoforganizationallearningandAI-specificlearning:knowledgecapture,synthesis,anddissemination.(seefigure1,page3.)
Becomingadeptattheselearningactivities—whichrep-resentonlyasliceofanorganization’soveralllearningcapability—significantlyimprovesacompany’sabilitytomanageuncertainty.
MostCompaniesHaveLimitedLearningCapabilities
Giventheuncertaintiesfacingmanycompanies,it’sstrik-ingthatmostorganizationshavelimitedlearningcapabili-ties;59%ofallcompaniesrepresentedinoursamplereportlowlevelsofbothorganizationallearningandAI-specificlearning.Only29%ofrespondentsagreeorstronglyagreethattheirenterprisehasorganizationallearningcapabili-ties.While27%oforganizationsreportlearningwithAI,only15%combineAI-specificlearningwithorganizationallearningcapabilities.TheseAugmentedLearnersarethefocusofthisreport.
Organizationallearning
?Learnsthroughexperimentsandtoleratesfailure
?Supportsemployeespresentingnewideas
?Learnsfrompostmortemsonsuccessfulandfailedprojects
?Codi?eslearningfrominitiatives
?Gathersandsharesinformationthatemployeeslearn
AI-specificlearning
?UsesAItoleadtonewlearning
?UsesAItolearnfromperformance
?BuildsAIsolutionswithhumanfeedbackloops
?EnablesemployeestolearnfromAIsolutions
FIGURE1
CharacteristicsofOrganizationalLearningandAI-specificLearning
Weoutlinecharacteristicsoforganizationaland
AI-specificlearningbasedonninesurveyquestions.
AI-speci?cLearning
OrganizatiOnallearning
LowHigh
Anorganization’scapabilitytochangeitsknowledgethroughexperience.
ai-specificlearning
Themeasureoforganizations’useofAIforlearning.
augmentedlearners
OrganizationsthatscorehighonorganizationallearningandAI-specificlearning.
limitedlearners
OrganizationsthatscorelowonorganizationallearningandAI-specificlearning.
Inourglobalsurvey,weassessedanorganizationashaving“high”or“l(fā)ow”organizationalandAIlearningcapabilities.Formoredetail,see“AbouttheResearch,”page2.
12%
AI-speci?cLearners
15%
AugmentedLearners
59%
LimitedLearners
14%
OrganizationalLearners
Low
OrganizationalLearning
High
FIGURE2
LearningCapabilitiesVary
Only15%oforganizationsareAugmentedLearners—
organizationsthatenhanceorganizationallearningwithAI.
LearningtoManageUncertainty,WithAI
3
Limitedlearningcapabilitiesconstrainopportunitiesandundermineorganizations’abilitytomanageuncertainty.
AugmentedLearnersAreBetteratManagingUncertainty
Amongoursample,15%oforganizationsreporthighlev-elsofbothorganizationallearningandAI-specificlearning.TheseAugmentedLearnersdisplayabilitiesandadvantagesthatleadtobetteroutcomesthanorganizationswithlimitedcapabilities.Theyaremorelikelytoimprovefinancialout-comeswithAIthanLimitedLearners:99%ofAugmentedLearnersreportannualizedrevenuebenefitsfromAI.
(see
sidebar,“enhancingOrganizatiOnallearningWith
aiimprOvesfinancialOutcOmes,”page5.)
What’smore,theyaremuchmorelikelytobepreparedtodealwithuncer-taintyfromtalent,technology,andlegaldisruptions.
Figure3showsthatorganizationallearningaloneorAI-specificlearningaloneofferssomebenefits,buttheircombinationrepresentsthemostpowerfulhedgeagainstmultipletypesofuncertainty.OrganizationallearningwithAImaywellprovetobeasourceofresilienceagainstotherformsofdisruptionsoruncertainty.
AugmentedLearnersAreBetterPreparedforManyTypesofUncertainty
CombiningorganizationallearningandAI-specificlearn-ingcapabilitieshelpsenterprisesmanageuncertaintyand
disruptionsfromtalentmobility,changingtechnology,andevolvingregulatoryandlegalrequirements.
(seefig-
ure5,page6.)
DisruptionsFromTalentMobility
Elevatedratesofworkersquitting,retiring,beinglaidoff,orevenghostingemployerscreaterisksandambiguitiesfororganizationsstrivingtocompete.ShilpaPrasadisheadofincubation,AIVenturesatLGNova,thesubsidiaryofLGElectronicsthatworkswithstartupstofuelinnova-tionforthecompany.Sheobservesthat“60%ofthework-forcewilllikelyhittheageof65bytheyear2028or2030,whichmeansthatalotofknowledgewillgooutfromtheworkforcebecausethey’llretire,notbecausethey’regoingsomewhereelsetowork.”Whenemployeesleaveorgani-zations,theirknowledgecanleavewiththemunlessthecompanyhaseffectiveorganizationallearningcapabilities.
Theseproblemsarenotnewfororganizations.Inindus-trieslikechemicals,aerospace,andoilandgas,retirementrateshavebeenanincreasingcauseforalarmforyears.However,companieshavenewresourcestoaddressthesechallenges.Augmentedlearningisavaluableresourceforaddressingdisruptionsfromtalentmobility.Only39%oforganizationswithlimitedlearningfeelpreparedtohan-dlethedisruptioninknowledgefromdepartingemploy-ees,butthisreadinessincreasesto64%ifthecompanieshaveorganizationallearningcapabilities.UsingAIcanfurthercontributetothisreadiness:Eighty-threepercentofAugmentedLearnersarepreparedtodealwiththeuncertaintyofknowledgedisruptionfromtalentmobil-ity—twiceasmuchasLimitedLearners.
FIGURE3
LearningWithAIHelpsOrganizationsManageUncertainty
Organizationsthatcombine
organizationalandAI-specific
learning(AugmentedLearners)are1.6timesmorelikelytofeelpreparedtomanageuncertaintythanorganizationswithlimitedlearningcapabilities.
AIwillallowustomanageuncertainty
LimitedLearners
OrganizationalLearnersAI-speci?cLearnersAugmentedLearners
Percentageofrespondentsineachlearningcategorywhostronglyagreeoragreewiththeabovestatement.
inourindustry.1.6×
82%
76%
58%
53%
4
MITSLOANMANAGEMENTREVIEW?BCG
SIDEBAR
ENHANCINGORGANIZATIONALLEARNINGWITHAIIMPROVESFINANCIALOUTCOMES
NumerousstudiesnowshowthedirectfinancialbenefitsofAIadoption.Clearly,organizationsarefindingwaystoextractfinancialbenefitsthroughAI,evenifmanysucheffortsfailortheircostsexceedrevenues.Extensivepastresearchalsosurfacesthegeneralbenefitsoforganizationallearningforcompanies.Inpriorresearch,wefoundthatorganizationswithsuperiorlearningcapabilitiesaremorelikelytoobtainsignifi-cantfinancialbenefitsfromtheirAIusethanorganizationswithlesserlearningcapabilities.
Inthisstudy,wefindthatusingAIcanimproveorganizationallearningcapabilitiesandthattheselearningimprovementsaresimilarlytiedtoimprovedfinancialresults.OrganizationsusingAItoimproveorganizationallearningare1.4timesmorelikely
torecognizesomerevenuebenefitsfromAIcomparedwithorganizationswithlimitedlearningcapabilities.Indeed,virtuallyalloftheseorganizations(99%)recognizeorobservesomerevenuebenefitsfromAI.What’smore,organizationsthatcombineAIandorganizationallearningaresignificantlymorelikelytohaverealizedrevenuebenefitsfromAIcomparedwithcompaniesthatexcelatorganizationallearningbutnotlearningwithAI,andwithcompaniesthatexcelatAI-specificlearningbutnotorganizationallearning.Thatis,combiningorganiza-tionallearningandAI-specificlearningenablesorganizationstocrossarevenuebenefitthresholdthatneithertypeoflearningalonecangenerate.
1.4×
Overthepastthreeyears,AIhascreatedadditionalbusinessvalue.
LimitedLearners
OrganizationalLearnersAI-speci?cLearnersAugmentedLearners
66%
76%
95%
89%
PercentageofrespondentswhostronglyagreeoragreethatAIhascreatedadditionalbusinessvalueoverthepastthreeyears.
1.4×
Ourorganizationhasrealizedrevenuebene?tsfromAIonanannualizedbasis.
LimitedLearners
OrganizationalLearnersAI-speci?cLearnersAugmentedLearners
71%
72%
79%
99%
Percentageofrespondentswhoreportrevenuebene?tsfromAI.
FIGURE4
EnhancingOrganizationalLearningWithAILeadstoFinancialBenefits
Organizationsthatcombine
organizationallearningand
AI-specificlearning(AugmentedLearners)are1.4timesaslikelytorealizeadditionalbusiness
valueandannualizedrevenuebenefitsfromAI.
LearningtoManageUncertainty,WithAI
5
Asmoreandmoreworkplacecommunicationsoccurviadigitalchannels,emergingAIcapabilitiescanmakethisrawdatasensible,andtacitknowledgeaccessible,ondemand.JackieRocca,formervicepresidentofprod-uctatSlack,describeshowAIcansurfaceanddistillthetroveofinformationfrompastconversationsinaplatformlikeSlackwhenpeopleneedit.“Peoplecangetcontextfromcoworkerswholeftthecompanymonthsoryearsagoandstilllearnfromthatknowledge,”shepointsout.
GenerativeAItoolscanhelpsynthesizeanddisseminatepersonalizedknowledge.“GenAIhelpsyougetmorevalueoutofthisknowledgesothatyoucanfindwhatyou’relookingforandbemoreeffectiveinusingallthatdatathathasbeenavailabletoyoubuthasn’tbeenveryeasyforyoutoaccessanduse,”Roccasays.Whiletoolslikewikismakeiteasierforpeopletorecordknowledge,AIcapabilitiescanbolsterorganizationallearningaboutwhatworkersknow.Thatenablesorganizationstobetterhandleknowledge
Myorganizationispreparedtodealwithuncertaintyfrom…
Talentdisruptions
LimitedLearners
OrganizationalLearnersAI-speci?cLearnersAugmentedLearners
Technologydisruptions1.8×
LimitedLearners
OrganizationalLearnersAI-speci?cLearnersAugmentedLearners
Legaldisruptions
LimitedLearners
OrganizationalLearnersAI-speci?cLearnersAugmentedLearners
Percentageofrespondentsineachlearningcategorywhostronglyagreeoragreethattheirorganizationispreparedtodealwitheachtypeofuncertainty.Somevaluescalculatedwithrounding.
2.2×
1.6×
48%
49%
83%
86%
79%
68%
68%
39%
61%
64%
58%
71%
FIGURE5
CombiningOrganizational
LearningWithAILearningHelpsWithManyTypesofUncertainty
Organizationsthatcombine
organizationalandAI-specificlearning(AugmentedLearners)aremorelikelytomanagetalent,technology,and
legaldisruptions.
6
MITSLOANMANAGEMENTREVIEW?BCG
lossfromtalentmobility,reducinguncertaintyaroundhowandwhentocapturetacitknowledge.
Onecloudservicesproviderwasn’tpreparingforapoten-tialpandemicwhenitdevelopeditslearningtool,butwhenin-personmeetingswerenolongerpossibleduetoCOVID-19,itsplatformandmicro-learningcontentenabledthecompanytosustainandevenenhancemean-ingfuleducationalexperiences.Thecompany’sresponsibleAIleadexplainshowaninnovativelearningtoolturnedintoapowerfultoolformanaginguncertaintieswroughtbythepandemic.Beforethepandemic,thecompanyhadbegunshiftingitslearningmodulestoshorter,AI-supported“micro-adaptive”approachessuitablefora“TikTokworld.”Thepandemicnecessitatedaremoteworkenvironmentthatchangedwhatemployeesneededtoknowand,further-more,madeitmoredifficultforthecompany’seducationalcontentproviderstodeterminewhatemployeesknewanddidn’tknowonanongoingbasis.
Theadaptivemodulestailoredcontentrecommendationstoeachindividualasthesystemassessedindividualusers’learningcapabilities.“AIbecameahugepartofthat,”thisexecutivesays.“Wemonitoredusers’self-reportingandskillsself-assessmentsintheirprofilesandfromthelearningplatform.”Byanalyzingskillsandcompetencyproficiencyacrosssystemsthroughouttheorganization,thecompanyidentifiedwhatitsemployeeswerelearningandneededtolearn.Sheadds,“TheAI-enabledmodulesdidnotjustenableadifferentdeliveryofcontent;theplatformhelpedpeoplebetterunderstandwhattheyknewandhowthatintersectedwithwhattheyneededtoknow.”Drawingonthelearningapproachesandhabitsofmanyofthecompany’sworkers,thelearningmodulesmadetailoredrecommenda-tionsbasedonindividualneedsthatreduceduncertaintyaboutwhatanindividualneededtolearnnext.EnhancingorganizationallearningwithAIprovidedflexibilitytoman-agenecessarychangesduringanunanticipatedcrisis.
TechnologicalandRegulatoryUncertainty
Increasinglyfrequenttechnologyinnovationsleadtosignifi-cantstrategicandoperationaluncertainty.Adaptingsystemsoverandoveragaincanbeexhaustinganddisruptivetotech-nologistsandbusinessusersalike.JustwhencompanieshadbeguntounderstandhowtoincorporateAIuseintotheirbusinessstrategies,generativetoolsintroducedchangesthatrequiredareassessment.
(see“thestateOfaiinbusiness,”
page14.)
ToniaSideri,directoroftheAIandAnalyticsCenter
ofExcellenceatNovoNordisk,notesthat“technologyisevolvingfasterthanorganizationscanaddress.Combiningthatwiththehypearoundtechnology’spossibleeffectspullstheorganizationtodosomething.”Emergingtechnologiesbecome“apropellerfortheorganization,”sheobserves,evenifit’sinitiallyunclearwhatthebusinesscaseisorwhereinvestmentsshouldgo.Reassessingtechnologyinvestmentscanbebeneficial,eveniforganizationsdon’tendupadjustingtheirstrategiesbut,rather,reinforcethemtoworkwithinthenewtechnologicallandscape.
What’smore,technologyadoptioncanleadtomore,andmorecomplex,regulatoryscrutinyandcomplianceissues,raisingdifficultquestionsabouthowtonavigateincreas-inglyuncertainlegalenvironments.Surprisingly,usingAItoamplifyorganizationallearningdramaticallyimprovesacompany’sabilitytomanageuncertaintyfrombothtech-nologyandregulatorydisruptions.Comparedwithorga-nizationswithlimitedlearningcapabilities,AugmentedLearnersaresignificantlymorelikelytobepreparedtodeal
withuncertaintyfromtechnologydisruptions(86%versus49%)andregulatorydisruptions(79%versus48%).(seefigure5,page6.)
Learningtomanageuncertaintythatcomesfromadepen-denceonoldertechnologyandfromfuturewavesoftech-nologyisagrowingopportunityforAugmentedLearners.SheliaAnderson,CIOofAflacU.S.,shareshowtheinsurerusesgenerativeAItoreverse-engineercodeincertainleg-acysystems.Thisapproachisprojectedtoboostcurrentlevelsofsystemproductivitybyfiveto10timesbyrevealinghiddencomplexities.“Wehavebuiltinapproachestolearn-ingthatleverageAIandactuallyhelptoinformourorgani-zationonhowAIcanbeusedaswell,”Andersonsays.ShenotesthatAflacalsohasatechnologyincubatorthatusesAItoevaluatenewtechnologiesandrapidlyprototypelead-ingcandidatestoproveoutconceptsforthebusiness.Ifaprototypeappearedtobeviableforthebusiness,Andersonsays,“wewoulduseAItobuildafullbusinessmodelwiththereturnoninvestmentorproductivitysavingsorwhat-everbusinessvaluemetricwe’relookingtoachieve.”
Ontheregulatoryfront,largeorganizationswithglobaloperationscanuseAItonavigatecomplex,uncertainreg-ulatoryframeworksthatvaryfromonecountrytothenext.Forexample,ELC’sGottipatiobserves,“Fromacompanypointofview,youmakeoneproductanddistributeit.Butthen,iftherequirementsaredifferentfordifferentcountries,andalsocertainingredientsarelimitedincertaincountries,
LearningtoManageUncertainty,WithAI
7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 4年級(jí)上冊(cè)數(shù)學(xué)人教版說課稿7篇
- 網(wǎng)頁制作案例教程HTML5+CSS3課程設(shè)計(jì)
- 《數(shù)理經(jīng)濟(jì)學(xué)》課程教學(xué)大綱
- 復(fù)習(xí)真題卷04 第6-7單元(解析版)
- DBJ51-T 198-2022 四川省既有民用建筑結(jié)構(gòu)安全隱患排查技術(shù)標(biāo)準(zhǔn)
- 2009年高考語文試卷(全國Ⅱ卷)(解析卷)
- 建筑工程行業(yè)工程測(cè)量培訓(xùn)體會(huì)
- 通信行業(yè)客服工作總結(jié)
- 《色彩的漸變》課件
- 有關(guān)醫(yī)院的實(shí)習(xí)報(bào)告三篇
- YY 9706.210-2021醫(yī)用電氣設(shè)備第2-10部分:神經(jīng)和肌肉刺激器的基本安全和基本性能專用要求
- GB/T 5130-1997電氣用熱固性樹脂工業(yè)硬質(zhì)層壓板試驗(yàn)方法
- FZ/T 01041-2014絨毛織物絨毛長度和絨毛高度的測(cè)定
- 《經(jīng)濟(jì)學(xué)導(dǎo)論》考試復(fù)習(xí)題庫(含答案)
- 農(nóng)田水利渠道灌溉與排水課件
- 六棱塊護(hù)坡施工方案
- 機(jī)械制圖課件(完整版)
- 夸美紐斯-大教學(xué)論-文本細(xì)讀
- 《行政組織學(xué)小抄》word版
- 日立多聯(lián)機(jī)系統(tǒng)調(diào)試培訓(xùn)教材
- (完整版)環(huán)境科學(xué)與工程-專業(yè)英語詞匯必備(免費(fèi))
評(píng)論
0/150
提交評(píng)論