下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
解答題規(guī)范練(三)
1.設(shè)函數(shù)f(x)=sin[X61—2cos2.x+1(?!?),直線y=《l與函數(shù)f(x)圖象相鄰
兩交點(diǎn)的距離為
(1)求。的值;
(2)在△/1回中,角/、B、。所對的邊分別是a、b、c,若點(diǎn)R〔2oJl是函數(shù)y=f(x)圖象的
一個對稱中心,且6=3,求面積的最大值.
2.
如圖,/C是圓。的直徑,B、〃是圓。上兩點(diǎn),AC=2BC=2CD=2,必,圓。所在的平面,
BM=^BP.
3
(1)求證:CW平面心。;
(2)當(dāng)◎/與平面為。所成角的正弦值為四時,求"的值.
5
3.設(shè)函數(shù)F(x)=11—X+A/1+X.
(1)求函數(shù)f(x)的值域;
(2)當(dāng)實數(shù)x£[0,1],證明:f(x)^2--/.
4
4.已知拋物線£:/=2°x上一點(diǎn)(見2)到其準(zhǔn)線的距離為2.
(1)求拋物線£的方程;
(2)如圖,A,B,C為拋物線£上的三個點(diǎn),。(8,0),若四邊形48切為菱形,求四邊形
46CZ?的面積.
5.已知數(shù)列{aj的各項都是正數(shù),且對任意的neN*,都有成=22—其中Z為數(shù)歹網(wǎng)劣}
的前〃項和.
⑴求數(shù)列{為}的通項公式;
⑵設(shè)2=3"+(―I)""A.2a.(A為非零整數(shù),aGN*),試確定A的值,使得對任意的〃GN*,
都有bQb.成立.
解答題規(guī)范練(三)
3XIGJIJI
1.解:(1)函數(shù)_f(x)=sinl6J—2cos-x+1=sinGXCOS----cosGxsin----
266
2.l+cos3x卜匚加sin”—{os4
222
0T
=A/5Sini3J.
因為Hx)的最大值為寸3,
所以Ax)的最小正周期為兀,
所以3=2.
ZU],
JT
因為岳=0=8=——,
3
a+C-IDa+c~91
因為cosB=
2ac2ac2
所以a,c=a~\~c—9N2ac—9,ECW9,
Lesin片海cW地
故S^ABC-
244
故△城面積的最大值為f
2.解:⑴證明:作好工也于區(qū)連接CK貝!J超〃".①
因為ZC是圓。的直徑,AC=2BC=2CD=2,
所以"_L〃C,ABLBC,
ZBAC=ZCAD=30°,
ZBCA=ZDCA=60°,AB=AD=^3.
又詼=1旗所以龐=,的=也,絲=史,所以/5B=/%4=30。=/CAD,
333BC3
所以比〃相,②
由①②,旦MECCE=E,PA^AD=A,得平面械:〃平面必。,
又OU平面MEC,CMt平面PAD,所以(W平面PAD.
(2)依題意,如圖,以/為原點(diǎn),直線48,/尸分別為x,z軸建立空間直角坐標(biāo)系,設(shè)/P
=a,則/(0,0,0),B(乖,0,0),C(g1,0),=0,0,a),
設(shè)平面的法向量為A=(X,y,z),與平面序C所成的角為明
n,AP=az=0,
則,_
n?AC=\[3x+y=0,
設(shè)X=A/5,則〃=(3,—3,0),
~>--?—?—?|—?-?I『-也,-i19q
又CM=CB+BM=CB+-BP,所以◎/=133j,
3
\CM'n\
所以sin0=|cos〈CM,ri)\=,所以a
’3,即/尸的值為73.
3.解:(1)由題意知,函數(shù)Hx)的定義域是[―1,1],
因為(x)=壬于"五,當(dāng)r5)20時,解得xWO,
2^1-x
所以f(以在(0,1)上單調(diào)遞減,在(一1,0)上單調(diào)遞增,所以f(以-=f(D=f(T)=4
力?皿=『(0)=2,所以函數(shù)廣(X)的值域為[/,2].
(2)證明:設(shè)力(x)=A/1—X+A/1+X+IV—2,[0,1],力(0)=0,
2
因為3(x)=--(1—--+-(l+x)
22222
因為二,({11^+4二)=隹二,?42工2雨^了忘2,所以〃(x)W0.
所以力(x)在(0,1)上單調(diào)遞減,又力(0)=0,
所以/l(x)W2一2/
4
4=2磔
4.解:(1)由已知可得二十2=2,
.2
消去〃得:
4p+4=0,p=2,
拋物線£的方程為/=4x.
⑵設(shè)/(Xi,%),C(x2,%),菱形40的中心”(4,%),
當(dāng)/Ax軸,則8在原點(diǎn),〃(4,0),\AC\=8,\BD\=S,菱形的面積
S^~\AC\\BD\=32;
2
當(dāng)力。與x軸不垂直時,設(shè)直線/C的方程為了="+),則直線切的斜率為一方,
由」4"消去x得:y—4ty—4ra=0,
4=ty-\-m
所以卜十%=4[所以"以[=一=(%+%)―2%%="+2〃,
%%=-4/44
%=2產(chǎn)+〃,ya=2t,因為〃為功的中點(diǎn),
所以8(4/+20一8,40,點(diǎn)3在拋物線上,且直線劭的斜率為一3
16t2=4(4t2+2ffl-8)
.2t=土(田。),解得〃=4,力=±1,
2r+而一8
所以5(4,±4),|初|=4白,=弋1+胤%—%|="+改16d+16卬=/義)16+64
=4而,S=-\AC\|^|=16^5,
2
綜上,S=32或16s.
5.解:(1)因為對任意的〃dN*,S=2S-an,①
所以當(dāng)時,a"=2$T—a。.”②
由①一②得,a:—aL=(2£—a)—(2sl—a1),
即a:—a:_1=a0+a0-],又a”+a”-i>0,所以a。-a〃_]=1(〃N2).
又當(dāng)”=1時,ax—2S1-ax,所以3=1.
故數(shù)列{a.}是首項為1,公差為1的等差數(shù)列,所以劣=〃(〃eN*).
(2)因為a,=〃(aGN*),
所以6”=3"+(-1尸上?2”,
所以4+1一4=35一3"+(—1)"八?2fl+1-(-l)^1A?2"=2X3"—3H?(-I)"-1?2°.
要使6〃+J>4恒成立,只需X<\2)恒成立.
Piz?—ii
①當(dāng)〃為奇數(shù)時,即4〈〔2j恒成立.又12〕
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版產(chǎn)品技術(shù)咨詢服務(wù)費(fèi)合同書一
- 2024年跨境電子商務(wù)平臺運(yùn)營協(xié)議3篇
- 浙江省寧波市2025年中考語文模擬押題試卷七套【附參考答案】
- 19古詩二首 夜宿山寺 說課稿-2024-2025學(xué)年語文二年級上冊統(tǒng)編版
- 2024燃?xì)夤境鞘腥細(xì)庹{(diào)峰服務(wù)天然氣購銷合同3篇
- 新時代共青團(tuán)愛國主義教育
- 秘書與行政助理技巧培訓(xùn)
- 2024有關(guān)聘用合同范文集錦
- 2024技術(shù)服務(wù)咨詢費(fèi)的合同范本
- 福建省南平市外屯中學(xué)2020-2021學(xué)年高一語文聯(lián)考試題含解析
- 英語-山東省淄博市2024-2025學(xué)年第一學(xué)期高三期末摸底質(zhì)量檢測試題和答案
- 2023年全國統(tǒng)一高考數(shù)學(xué)甲卷【文科+理科】試題及答案解析
- 億歐智庫-2024中國智能駕駛城區(qū)NOA功能測評報告
- 甘肅2024年甘肅培黎職業(yè)學(xué)院引進(jìn)高層次人才歷年參考題庫(頻考版)含答案解析
- 水利水電工程安全管理制度例文(三篇)
- GA/T 1280-2024銀行自助設(shè)備安全性規(guī)范
- 2025年超星爾雅學(xué)習(xí)通《勞動通論》章節(jié)測試題庫及參考答案(培優(yōu))
- 2024預(yù)防流感課件完整版
- 新疆烏魯木齊市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版質(zhì)量測試(上學(xué)期)試卷及答案
- 人教版2024-2025學(xué)年第一學(xué)期八年級物理期末綜合復(fù)習(xí)練習(xí)卷(含答案)
- 靜脈治療??谱o(hù)士競聘
評論
0/150
提交評論