下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE課時(shí)作業(yè)(五)同角三角函數(shù)的基本關(guān)系式一、選擇題1.若sinα+sin2α=1,那么cos2α+cos4α的值等于()A.0B.1C.2D.32.已知α是第三象限的角,cosα=-eq\f(12,13),則sinα=()A.eq\f(5,13)B.-eq\f(5,13)C.eq\f(5,12)D.-eq\f(5,12)3.若α∈[0,2π),且有eq\r(1-cos2α)+eq\r(1-sin2α)=sinα-cosα,則角α的取值范圍為()A.eq\b\lc\[\rc\)(\a\vs4\al\co1(0,\f(π,2)))B.eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))D.eq\b\lc\[\rc\](\a\vs4\al\co1(π,\f(3,2)π))4.若tanα=3,則2sinαcosα=()A.±eq\f(3,5)B.-eq\f(3,5)C.eq\f(3,5)D.eq\f(4,5)二、填空題5.已知△ABC中,tanA=-eq\f(5,12),則cosA=________.6.已知sinθ=eq\f(m-3,m+5),cosθ=eq\f(4-2m,m+5)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)<θ<π)),則tanθ=()A.eq\f(4-2m,m-3)B.±eq\f(m-3,4-2m)C.-eq\f(5,12)D.-eq\f(3,4)或-eq\f(5,12)7.已知sinαcosα=eq\f(1,5),則sinα-cosα=________.三、解答題8.已知tanα=eq\f(2,3),求下列各式的值:(1)eq\f(cosα-sinα,cosα+sinα)+eq\f(cosα+sinα,cosα-sinα);(2)eq\f(1,sinαcosα);(3)sin2α-2sinαcosα+4cos2α.9.求證:2(1-sinα)(1+cosα)=(1-sinα+cosα)2.[尖子生題庫(kù)]10.若α是三角形的內(nèi)角,且tanα=-eq\f(1,3),則求sinα+cosα的值.課時(shí)作業(yè)(五)同角三角函數(shù)的基本關(guān)系式1.解析:由sinα+sin2α=1,得sinα=cos2α,所以cos2α+cos4α=sinα+sin2α=1.答案:B2.解析:∵α是第三象限的角,∴sinα=-eq\r(1-cos2α)=-eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(12,13)))2)=-eq\f(5,13).答案:B3.解析:因?yàn)閑q\r(1-cos2α)+eq\r(1-sin2α)=sinα-cosα,所以eq\b\lc\{\rc\(\a\vs4\al\co1(sinα≥0,,cosα≤0,))又α∈[0,2π),所以α∈[eq\f(π,2),π],故選B.答案:B4.解析:2sinαcosα=eq\f(2sinαcosα,sin2α+cos2α)=eq\f(2tanα,tan2α+1)=eq\f(6,10)=eq\f(3,5).答案:C5.解析:∵tanA=-eq\f(5,12),又A是三角形的內(nèi)角,∴A是鈍角.∵eq\f(sinA,cosA)=-eq\f(5,12),∴-5cosA=12sinA.又sin2A+cos2A=1,∴cosA=-eq\f(12,13).答案:-eq\f(12,13)6.解析:由sin2θ+cos2θ=1,有eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(m-3,m+5)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4-2m,m+5)))2=1,化簡(jiǎn)得m2-8m=0,解得m=0或m=8,由于θ在其次象限,所以sinθ>0,m=0舍去,故m=8,sinθ=eq\f(5,13),cosθ=-eq\f(12,13),得tanθ=-eq\f(5,12).答案:C7.解析:(sinα-cosα)2=sin2α-2sinαcosα+cos2α=1-2sinαcosα=eq\f(3,5),則sinα-cosα=±eq\f(\r(15),5).答案:±eq\f(\r(15),5)8.解析:(1)eq\f(cosα-sinα,cosα+sinα)+eq\f(cosα+sinα,cosα-sinα)=eq\f(1-tanα,1+tanα)+eq\f(1+tanα,1-tanα)=eq\f(1-\f(2,3),1+\f(2,3))+eq\f(1+\f(2,3),1-\f(2,3))=eq\f(26,5).(2)eq\f(1,sinαcosα)=eq\f(sin2α+cos2α,sinαcosα)=eq\f(tan2α+1,tanα)=eq\f(13,6).(3)sin2α-2sinαcosα+4cos2α=eq\f(sin2α-2sinαcosα+4cos2α,sin2α+cos2α)=eq\f(tan2α-2tanα+4,tan2α+1)=eq\f(\f(4,9)-\f(4,3)+4,\f(4,9)+1)=eq\f(28,13).9.證明:右邊=2-2sinα+2cosα-2sinαcosα=2(1-sinα+cosα-sinαcosα)=2(1-sinα)(1+cosα)=左邊,∴2(1-sinα)(1+cosα)=(1-sinα+cosα)2.10.解析:由tanα=-eq\f(1,3),得sinα=-eq\f(1,3)cosα,將其代入sin2α+cos2α=1,得eq\f(10,9)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年政府公共安全監(jiān)控技術(shù)合同范本3篇
- 2024年版建設(shè)項(xiàng)目招標(biāo)協(xié)調(diào)合同
- 三年級(jí)教學(xué)計(jì)劃3篇
- 員工工作計(jì)劃
- 2024-2030年中國(guó)羥甲煙胺片行業(yè)發(fā)展?jié)摿︻A(yù)測(cè)及投資戰(zhàn)略研究報(bào)告
- 服裝銷售工作計(jì)劃
- 學(xué)習(xí)部工作計(jì)劃4篇
- 去超市實(shí)習(xí)報(bào)告范文集合7篇
- 銀行員工辭職信
- 關(guān)于教師職稱述職報(bào)告匯編5篇
- 部編版語文四年級(jí)下冊(cè)第二單元大單元教學(xué)設(shè)計(jì)核心素養(yǎng)目標(biāo)
- 2024年小學(xué)教師聽課、評(píng)課制度
- 精品解析:河北省衡水市衡水中學(xué)2023-2024學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(解析版)
- 2023年《鐵道概論》考試復(fù)習(xí)題庫(kù)附答案(含各題型)
- (電焊工)勞務(wù)分包合同
- 陜西省西安市西咸新區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期1月期末歷史試題
- 北師大版數(shù)學(xué)三年級(jí)下冊(cè)全冊(cè)教案教學(xué)設(shè)計(jì)及教學(xué)反思
- 重難點(diǎn)06讀后續(xù)寫-2023年高考英語【熱點(diǎn)·重點(diǎn)·難點(diǎn)】(新高考專用)
- 眼科手術(shù)圍手術(shù)期的護(hù)理
- 人事行政主管打造高效團(tuán)隊(duì)提升員工滿意度實(shí)現(xiàn)人力資源的優(yōu)化管理和企業(yè)文化的建設(shè)
- 《腰椎穿刺術(shù)》課件
評(píng)論
0/150
提交評(píng)論