版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省漢川二中2025屆數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個(gè)單位長(zhǎng)度后得到的圖象關(guān)于軸對(duì)稱;③若在上恰有7個(gè)零點(diǎn),則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個(gè)數(shù)為()A.1 B.2 C.3 D.42.向量,,且,則()A. B. C. D.3.已知集合,集合,則()A. B. C. D.4.設(shè),,則()A. B.C. D.5.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是()A.48 B.60 C.72 D.1206.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.7.已知函數(shù)的圖象向左平移個(gè)單位后得到函數(shù)的圖象,則的最小值為()A. B. C. D.8.已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A.2 B.3 C.5 D.89.已知直線與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.10.設(shè)全集U=R,集合,則()A. B. C. D.11.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知函數(shù),若,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對(duì)邊分別為,且.若為鈍角,,則的面積為____________.14.已知實(shí)數(shù),滿足,則目標(biāo)函數(shù)的最小值為__________.15.已知函數(shù),則函數(shù)的極大值為___________.16.記數(shù)列的前項(xiàng)和為,已知,且.若,則實(shí)數(shù)的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知在中,a、b、c分別為角A、B、C的對(duì)邊,且.(1)求角A的值;(2)若,設(shè)角,周長(zhǎng)為y,求的最大值.19.(12分)如圖,三棱柱的所有棱長(zhǎng)均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.20.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.21.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.22.(10分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當(dāng)時(shí),證明:對(duì)任意恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
對(duì)函數(shù)化簡(jiǎn)可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性及平移變換,對(duì)四個(gè)命題逐個(gè)分析,可選出答案.【詳解】因?yàn)?,所以周?對(duì)于①,因?yàn)?,所以,即,故①錯(cuò)誤;對(duì)于②,函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到的函數(shù)為,其圖象關(guān)于軸對(duì)稱,則,解得,故對(duì)任意整數(shù),,所以②錯(cuò)誤;對(duì)于③,令,可得,則,因?yàn)?,所以在上?個(gè)零點(diǎn),且,所以第7個(gè)零點(diǎn),若存在第8個(gè)零點(diǎn),則,所以,即,解得,故③正確;對(duì)于④,因?yàn)?,且,所以,解得,又,所以,故④正確.故選:B.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性,考查學(xué)生的計(jì)算求解能力與推理能力,屬于中檔題.2、D【解析】
根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點(diǎn)睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.3、D【解析】
可求出集合,,然后進(jìn)行并集的運(yùn)算即可.【詳解】解:,;.故選.【點(diǎn)睛】考查描述法、區(qū)間的定義,對(duì)數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算.4、D【解析】
由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因?yàn)?,,則,且,所以,,又,即,則,即,故選:D.【點(diǎn)睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.5、A【解析】
對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。6、C【解析】
由程序語(yǔ)言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過(guò)程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題7、A【解析】
首先求得平移后的函數(shù),再根據(jù)求的最小值.【詳解】根據(jù)題意,的圖象向左平移個(gè)單位后,所得圖象對(duì)應(yīng)的函數(shù),所以,所以.又,所以的最小值為.故選:A【點(diǎn)睛】本題考查三角函數(shù)的圖象變換,誘導(dǎo)公式,意在考查平移變換,屬于基礎(chǔ)題型.8、D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D【點(diǎn)睛】本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.9、C【解析】
根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即,解得,此時(shí),因?yàn)?,在遞增,所以的最大值.故選:C【點(diǎn)睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.10、A【解析】
求出集合M和集合N,,利用集合交集補(bǔ)集的定義進(jìn)行計(jì)算即可.【詳解】,,則,故選:A.【點(diǎn)睛】本題考查集合的交集和補(bǔ)集的運(yùn)算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.11、B【解析】
分別比較復(fù)數(shù)的實(shí)部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限.【詳解】因?yàn)闀r(shí),所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.12、B【解析】
對(duì)分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因?yàn)?,所以.又因?yàn)椋覟殇J角,所以.由余弦定理得,即,解得,所以故答案為:【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14、-1【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.【詳解】作出實(shí)數(shù)x,y滿足對(duì)應(yīng)的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當(dāng)直線yx經(jīng)過(guò)點(diǎn)A時(shí),直線yx的縱截距最小,此時(shí)z最?。?,得A(﹣1,﹣1),此時(shí)z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,是基礎(chǔ)題15、【解析】
對(duì)函數(shù)求導(dǎo),通過(guò)賦值,求得,再對(duì)函數(shù)單調(diào)性進(jìn)行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.【點(diǎn)睛】本題考查函數(shù)極值的求解,難點(diǎn)是要通過(guò)賦值,求出未知量.16、【解析】
根據(jù)遞推公式,以及之間的關(guān)系,即可容易求得,再根據(jù)數(shù)列的單調(diào)性,求得其最大值,則參數(shù)的范圍可求.【詳解】當(dāng)時(shí),,解得.所以.因?yàn)?,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項(xiàng)為3,公差為2的等差數(shù)列,所以,則.令,則.當(dāng)時(shí),,數(shù)列單調(diào)遞減,而,,,故,即實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題考查由遞推公式求數(shù)列的通項(xiàng)公式,涉及數(shù)列單調(diào)性的判斷,屬綜合困難題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結(jié)合即可解決.【詳解】(1),當(dāng)時(shí),,遞增,當(dāng)時(shí),,遞減.故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),,,設(shè)的根為,即有可得,,當(dāng)時(shí),,遞減,當(dāng)時(shí),,遞增.,所以,①當(dāng);②當(dāng)時(shí),設(shè),遞增,,所以.綜上,.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)恒成立問(wèn)題,這里要強(qiáng)調(diào)一點(diǎn),處理恒成立問(wèn)題時(shí),通常是構(gòu)造函數(shù),將問(wèn)題轉(zhuǎn)化為函數(shù)的極值或最值來(lái)處理.18、(1);(2).【解析】
(1)利用正弦定理,結(jié)合題中條件,可以得到,之后應(yīng)用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周長(zhǎng),利用三角函數(shù)的最值求解即可.【詳解】(1)由已知可得,結(jié)合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴當(dāng),即時(shí),.【點(diǎn)睛】該題主要考查的是有關(guān)解三角形的問(wèn)題,解題的關(guān)鍵是掌握正余弦定理,屬于簡(jiǎn)單題目.19、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點(diǎn),連接,由于平面,得出,根據(jù)線線位置關(guān)系得出,利用線面垂直的判定和性質(zhì)得出,結(jié)合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據(jù)題意,建立空間直角坐標(biāo)系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點(diǎn),連接,則平面平面,平面,,為的中點(diǎn),為的中點(diǎn),平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標(biāo)系,設(shè)則,,,,,設(shè)平面的法向量為,則,取得,設(shè)直線與平面所成角為,直線與平面所成角的余弦值為.【點(diǎn)睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.20、(1)證明見解析;(2)最小值為1【解析】
(1)利用基本不等式可得,再根據(jù)0<xy<1時(shí),即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當(dāng)且僅當(dāng)x=y(tǒng)=z時(shí)取等號(hào).又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當(dāng)且僅當(dāng)x=y(tǒng)=z=1時(shí)取等號(hào),∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點(diǎn)睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬中檔題.21、(1)(2)的遞減區(qū)間為和【解析】
(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)押題練習(xí)試題B卷含答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)題庫(kù)綜合試卷B卷附答案
- 2024年度年福建省高校教師資格證之高等教育學(xué)能力提升試卷B卷附答案
- 一年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)匯編
- 職業(yè)培訓(xùn)學(xué)校計(jì)劃及實(shí)施方案
- 2024年度合作伙伴保密義務(wù)協(xié)議
- 吊車租賃協(xié)議:2024年詳細(xì)
- 2024年度工程承包施工協(xié)議范本
- 大理石產(chǎn)品購(gòu)買與銷售專項(xiàng)協(xié)議范本
- 2024年企業(yè)對(duì)外擔(dān)保協(xié)議樣式
- 過(guò)氧化鈉安全技術(shù)說(shuō)明書
- 榮譽(yù)證書模板(共1頁(yè))
- 鐵板神數(shù)詳細(xì)取數(shù)法
- 醫(yī)院績(jī)效考核分配方案及實(shí)施細(xì)則
- 水工環(huán)地質(zhì)調(diào)查技術(shù)標(biāo)準(zhǔn)手冊(cè)
- 護(hù)照加急辦理申請(qǐng)
- 乙炔的理化性質(zhì)及危險(xiǎn)特性表
- 汽車場(chǎng)地越野賽突發(fā)事件應(yīng)急預(yù)案
- 神奇的世界文檔
- 頭痛的鑒別診斷--ppt課件完整版
- 某糧食倉(cāng)庫(kù)屋面預(yù)應(yīng)力拱板制作分項(xiàng)施工方案(附圖)
評(píng)論
0/150
提交評(píng)論