版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市第100中學2025屆高二數學第一學期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知角的頂點與坐標原點重合,始邊與x軸的非負半軸重合,角終邊上有一點(1,2),為銳角,且,則()A.-18 B.-6C. D.2.如圖,在三棱錐S-ABC中,E,F分別為SA,BC的中點,點G在EF上,且滿足,若,,,則()A. B.C. D.3.為迎接第24屆冬季奧運會,某校安排甲、乙、丙、丁、戊共5名學生擔任冰球、冰壺和短道速滑三個項目的志愿者,每個比賽項目至少安排1人,每人只能安排到1個項目,則所有排法的總數為()A.60 B.120C.150 D.2404.已知實數a,b,c滿足,,則a,b,c的大小關系為()A. B.C. D.5.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關于坐標原點的對稱點為,且,,則橢圓方程為()A. B.C. D.6.已知數列的通項公式為,則()A.12 B.14C.16 D.187.一動圓與圓外切,而與圓內切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支8.某班新學期開學統(tǒng)計新冠疫苗接種情況,已知該班有學生45人,其中未完成疫苗接種的有5人,則該班同學的疫苗接種完成率為()A. B.C. D.9.瑞士數學家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點,其歐拉線方程為,則頂點C的坐標是()A.() B.()C.() D.()10.已知是兩條不同的直線,是兩個不同的平面,則下列結論正確的是()A.若,則 B.若,則C若,則 D.若,則11.已知直線與直線垂直,則()A. B.C. D.312.甲,乙、丙、丁、戊共5人隨機地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的左、右焦點分別為,,過焦點的直線交該橢圓于兩點,若的內切圓面積為,兩點的坐標分別為,,則的面積________,的值為________.14.某學校為了獲得該校全體高中學生的體有鍛煉情況,按照男、女生的比例分別抽樣調查了55名男生和45名女生的每周鍛煉時間,通過計算得到男生每周鍛煉時間的平均數為8小時,方差為6;女生每周鍛煉時間的平均數為6小時,方差為8.根據所有樣本的方差來估計該校學生每周鍛煉時間的方差為________15.如圖,設正方形ABCD與正方形ABEF的邊長都為1,若平面ABCD,則異面直線AC與BF所成角的大小為______16.已知空間向量,,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.18.(12分)如圖,在三棱柱中,四邊形為矩形,,,點E為棱的中點,.(1)求證:平面平面;(2)求平面AEB與平面夾角的余弦值.19.(12分)某港口船舶停靠的方案是先到先停,且每次只能停靠一艘船.(1)若甲乙兩艘船同時到達港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機選一個數,若兩數之和為奇數,則甲先???;若兩數之和為偶數,則乙先???,這種方式對雙方是否公平?請說明理由;(2)若甲、乙兩船在一晝夜內到達該碼頭的時刻是等可能的.如果甲船停泊時間為1h,乙船停泊時間為2h,求它們中的任意一艘都不需要等待碼頭空出的概率.20.(12分)已知動點在橢圓:()上,,為橢圓左、右焦點.過點作軸的垂線,垂足為,點滿足,且點的軌跡是過點的圓(1)求橢圓方程;(2)過點,分別作平行直線和,設交橢圓于點,,交橢圓于點,,求四邊形的面積的最大值21.(12分)如圖是一個正三棱柱(以為底面)被一平面所截得到的幾何體,截面為ABC.已知,,M為AB中點.(1)證明:平面;(2)求此幾何體的體積.22.(10分)已知數列的前n項和,遞增等比數列滿足,且.(1)求數列,的通項公式;(2)求數列的前n項和為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由終邊上的點可得,由同角三角函數的平方、商數關系有,再應用差角、倍角正切公式即可求.【詳解】由題設,,,則,又,,所以.故選:A2、B【解析】利用空間向量基本定理結合已知條件求解【詳解】因為,所以,因為E,F分別為SA,BC的中點,所以,故選:B3、C【解析】結合排列組合的知識,分兩種情況求解.【詳解】當分組為1人,1人,3人時,有種,當分組為1人,2人,2人時有種,所以共有種排法.故選:C4、A【解析】利用對數的性質可得,,再構造函數,利用導數判斷,再構造,利用導數判斷出函數的單調性,再由單調性即可求解.【詳解】由題意可得均大于,因為,所以,所以,且,令,,當時,,所以在單調遞增,所以,所以,即,令,,當時,,所以在上單調遞減,由,,所以,所以,綜上所述,.故選:A5、C【解析】連結,設,則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設橢圓的方程:,設左焦點為,連結,由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設,則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關鍵點睛:本題考查了橢圓的標準方程求解及橢圓的簡單幾何性質,在求解橢圓標準方程時,關鍵是求解基本量,,.6、D【解析】利用給定的通項公式直接計算即得.【詳解】因數列的通項公式為,則有,所以.故選:D7、A【解析】依據定義法去求動圓的圓心的軌跡即可解決.【詳解】設動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點長軸長為9的橢圓.故選:A8、D【解析】利用古典概型的概率求解.【詳解】該班同學的疫苗接種完成率為故選:D9、A【解析】根據題意,求得的外心,再根據外心的性質,以及重心的坐標,聯(lián)立方程組,即可求得結果.【詳解】因為,故的斜率,又的中點坐標為,故的垂直平分線的方程為,即,故△的外心坐標即為與的交點,即,不妨設點,則,即;又△的重心的坐標為,其滿足,即,也即,將其代入,可得,,解得或,對應或,即或,因為與點重合,故舍去.故點的坐標為.故選:A.10、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C11、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.12、A【解析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據古典概型的概率公式求解即可【詳解】甲,乙、丙、丁、戊共5人隨機地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進行排列,然后丙、丁從3個空中選2個空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.6②.3【解析】由題意得,由內切圓面積為可得其半徑,根據焦點三角形面積公式可得第一空答案,結合面積公式和等面積法建立等式化簡即可.【詳解】解:由得由內切圓面積為可得其半徑,設其內切圓圓心為則又所以.故答案為:6;3【點睛】橢圓中常用面積公式:(1)(表示邊上的高);(2);(3)(為三角形內切圓半徑);(4).14、【解析】先求出100名學生每周鍛煉的平均時間,然后再求這100名學生每周鍛煉時間的方差,從而可估計該校學生每周鍛煉時間的方差【詳解】由題意可得55名男生和45名女生的每周鍛煉時間的平均數為小時,因為55名男生每周鍛煉時間的方差為6;45名女生每周鍛煉時間的方差為8,所以這100名學生每周鍛煉時間的方差為,所以該校學生每周鍛煉時間的方差約為,故答案為:15、##【解析】建立空間直角坐標系,利用空間向量法求出異面直線所成角;【詳解】解:如圖建立空間直角坐標系,則、、、,所以,,設直線與所成角為,則,因為,所以;故答案為:16、7【解析】根據題意,結合空間向量的坐標運算,即可求解.【詳解】根據題意,易知,因為,所以,即,解得故答案為:7三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)設為中點,連接,根據,證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標系,計算各點坐標,計算平面和平面的法向量,根據向量夾角公式計算得到答案.【詳解】(1)設為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標系,則,,,,,,由,,,即,∴,,,設為平面的法向量,則由,令,得,,∴,設為平面的法向量,則由,令,得,,∴,設二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力,建立空間直角坐標系是解題的關鍵.18、(1)證明見解析(2)【解析】(1)根據矩形及勾股定理的逆定理可得線面垂直的條件,再由平面,即可證明面面垂直;(2)建立空間直角坐標后,求出相關法向量,再用夾角公式即可.【小問1詳解】證明:由三棱柱的性質及可知四邊形為菱形又∵∴為等邊三角形∴,又∵,∴,∴又∵四邊形為矩形∴又∵∴平面又∵平面∴平面平面.【小問2詳解】以B為原點BE為x軸,為y軸,BA為E軸建立空間直角坐標系,如圖所示,,,,,,設平面的法向量為.則即∴,又∵平面ABE的法向量為,∴,∴平面ABE與平面夾角的余弦值為.19、(1)不公平,理由見解析.(2)【解析】(1)通過計算概率來進行判斷.(2)利用幾何概型計算出所求概率.【小問1詳解】兩數之和為奇數的概率為,兩數之和為偶數的概率為,兩個概率不相等,所以不公平.【小問2詳解】設甲到的時刻為,乙到的時刻為,則,若它們中的任意一艘都不需要等待碼頭空出,則或,畫出可行域如下圖陰影部分所示,所以所求的概率為:.20、(1);(2)【解析】(1)設點和,由題意可得點的軌跡方程,將點Q的坐標代入T的方程計算出即可;(2)設的方程,和,聯(lián)立橢圓方程并消元得到關于y的一元二次方程,根據韋達定理得到,進而求出和,根據平行線間的距離公式可得與的距離,得出所求四邊形面積的表達式,結合換元法和基本不等式化簡求值即可.【詳解】解:(1)設點,,則點,,,∵,∴,∴,∵點在橢圓上,∴,即為點的軌跡方程又∵點的軌跡是過的圓,∴,解得,所以橢圓的方程為(2)由題意,可設的方程為,聯(lián)立方程,得設,,則,且,所以,同理,又與的距離為,所以,四邊形的面積為,令,則,且,當且僅當,即時等號成立所以,四邊形的面積最大值為21、(1)證明見解析(2)【解析】(1)取的中點,連接,,可得四邊形為平行四邊形,從而可得,然后證明平面,從而可證明.(2)過作截面平面,分別交,于,,連接,作于,由所求幾何體體積為從而可得答案.【小問1詳解】如圖,取的中點,連接,,因為,分別是,的中點.所以且又因為,,所以且,故四邊形為平行四邊形,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北省黃石市2024年中考數學模擬考試試卷附答案
- 美容院顧客反饋收集與分析
- 科技園區(qū)企業(yè)創(chuàng)新能力歸類分析
- 高一化學二第一章第三節(jié)化學鍵練習
- 2024高中地理第3章區(qū)域自然資源綜合開發(fā)利用第1節(jié)第1課時資源開發(fā)條件能源基地建設學案新人教版必修3
- 2024高中物理第三章磁場課時25運動電荷在磁場中受到的力訓練含解析新人教版選修3-1
- 2024高中語文第四單元創(chuàng)造形象詩文有別方山子傳訓練含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考化學一輪復習專練52實驗綜合應用一含解析新人教版
- 2024高考化學一輪復習第一部分考點38晶體結構與性質強化訓練含解析
- 2024高考化學一輪復習課練29化學實驗常用儀器和基本操作含解析
- 2024年公務員考試《公共基礎知識》全真模擬試題1000題及答案
- 幼兒教育專業(yè)國家技能人才培養(yǎng)工學一體化課程設置方案
- 2025年會計從業(yè)資格考試電算化考試題庫及答案(共480題)
- DL-T 5876-2024 水工瀝青混凝土應用酸性骨料技術規(guī)范
- GB/T 44889-2024機關運行成本統(tǒng)計指南
- 2024 ESC心房顫動管理指南解讀-第二部分
- 小學科學說課稿:《水能溶解一些物質》說課稿
- 五年級解方程計算題100道
- 漢語教學 《成功之路+進步篇+2》第16課課件
- GB/T 20028-2005硫化橡膠或熱塑性橡膠應用阿累尼烏斯圖推算壽命和最高使用溫度
- 廣州新版四年級英語下冊-復習計劃
評論
0/150
提交評論