版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TowardsData-EfficientDeepLearningwithMeta-LearningandSymmetries
JinXu
BalliolCollege
UniversityofOxford
AthesissubmittedforthedegreeofDoctorofPhilosophyinStatistics
Trinity2023
2
Acknowledgements
Firstandforemost,Iwanttoexpressmydeepgratitudetomysupervisors,Prof.Yee
WhyeTehandDr.TomRainforth.Theirunwaveringsupport,carefulguidance,andconstantinspirationhavebeeninvaluablethroughoutmyPhDjourney.Ithasbeenaprivilegetobementoredbythem,whoIregardasresearchrolemodels.Theirdepthandbreadthofknowledgehavebeenbothhumblingandenlightening.SpecialacknowledgementgoestoYeeWhye,whohasalwaysbeenconsiderateandreadytohelpintoughtimes.MyheartfeltthanksgotoTomforhisguidanceduringthechallengingtimesbroughtonbythepandemic.
IwouldliketoextendmygratitudetoallmycollaboratorsHyunjikKim,Jean-FrancoisTon,AdamKosiorek,EmilienDupont,andKasparM?rtens.TheirexpertiseandfeedbackhavebeencrucialinimprovingmyworkandIlearnagreatdealfromthem.AbigthankyoutoProf.RyanAdamsfromPrincetonUniversityandtomyinternshiphosts,JamesHensmanandMaxCrociatMicrosoftResearch.TheirmentorshipoutsideofmyPhDlifehasbeenanindispensablepartofmyresearchexperience.
Moreover,Ifeelextremelyfortunatetobesurroundedbyamazingandcaringfriendswhosenamesarenotpossibletoenumeratehere.AmongthemareEmilienDupont,Jean-FrancoisTon,CharlineLeLan,BobbyHe,SheheryarZaidi,QinyiZhang,GuneetDhillon,AndrewCampbell,ChrisWilliams,CarloAlfano,FaaizTaufiq,AnnaMenacherandothersfromourlovelyoffice1.17,HanwenXing,YanzhaoYang,NingMiao,ChaoZhang,Yutonglu,YixuanHe,XiLin,YuanZhou,FanWu,BohaoYaofromthedepartmentofstatistics,DunhongJin,SihanZhou,SijiaYao,HuiningYang,KevinWang,NataliaHong,HangYuan,KangningZhang,ChengyangWangandmanyothersfromotherdepartmentsatOxford,DenizOktay,SulinLiu,JennyZhanandothersfromPrincetonUniversity,internshippeersatMicrosoftResearchincludingAlexanderMeulemans,SalehAshkboosfromETH.
Aspecialthankstoalluniversityanddepartmentstaff,especiallyChrisCullenforhiskindandpatientsupportduringdifficulttimes,andtoJoannaStoneham,Stuart
3
McRobert,andotherswhoensuredasmoothPhDexperience.
Finally,aboveall,mydeepestthanksgotoYifanYuforherloveandcompanionship.SheimmenselyenrichedmytimeinOxford,bringingcolourandjoytomylife.Additionally,IameternallygratefultomyparentsChengxiangXuandFengChenforgivingmethefreedomtopursuemypassionsandfortheirunquestioningsupportthroughoutthisjourney.
4
Abstract
Recentadvancesindeeplearninghavebeensignificantlypropelledbytheincreasingavailabilityofdataandcomputationalresources.Whiletheabundanceofdataenablesmodelstoperformwellincertaindomains,therearereal-worldapplications,suchasinthemedicalfield,wherethedataisscarceordifficulttocollect.Furthermore,therearealsoscenarioswherethelargedatasetisbetterviewedaslotsofrelatedsmalldatasets,andthedatabecomesinsufficientforthetaskassociatedwithoneofthesmalldatasets.Itisalsonoteworthythathumanintelligenceoftenrequiresonlyahandfulofexamplestoperformwellonnewtasks,emphasizingtheimportanceofdesigningdata-efficientAIsystems.Thisthesisdelvesintotwostrategiestoaddressthischallenge:meta-learningandsymmetries.Meta-learningapproachesthedata-richenvironmentasacollectionofmanysmall,individualdatasets.Eachofthesesmalldatasetsrepresentsadistincttask,yetthereisunderlyingsharedknowledgebetweenthem.Harnessingthissharedknowledgeallowsforthedesignoflearningalgorithmsthatcanefficientlyaddressnewtaskswithinsimilardomains.Incomparison,symmetryisaformofdirectpriorknowledge.Byensuringthatmodels’predictionsremainconsistentdespiteanytransformationtotheirinputs,thesemodelsenjoybettersampleefficiencyandgeneralization.
Inthesubsequentchapters,wepresentnoveltechniquesandmodelswhichallaimatimprovingthedataefficiencyofdeeplearningsystems.Firstly,wedemonstratethesuccessofencoder-decoderstylemeta-learningmethodsbasedonConditionalNeuralProcesses(cnps).Secondly,weintroduceanewclassofexpressivemeta-learnedstochasticprocessmodelswhichareconstructedbystackingsequencesofneuralparameterisedMarkovtransitionoperatorsinfunctionspace.Finally,weproposegroupequivariantsubsampling/upsamplinglayerswhichtacklesthelossofequivarianceinconventionalsubsampling/upsamplinglayers.Theselayerscanbeusedtoconstructend-to-endequivariantmodelswithimproveddata-efficiency.
i
Contents
1Introduction
1
1.1Motivation
1
1.2Thesisoutline
3
1.3Papers
4
2Background
6
2.1Meta-learning
6
2.1.1Conventionalsupervisedlearningandmeta-learning
6
2.1.2Differentviewsofmeta-learning
8
2.1.3Commonapproachestometa-learning
10
2.2Neuralprocesses
11
2.2.1Stochasticprocesses
12
2.2.2Neuralprocessesasstochasticprocesses
12
2.2.3Neuralprocesstrainingobjectives
13
2.2.4Ameta-learningperspective
14
2.3Symmetriesindeeplearning
15
2.3.1Group,cosetandquotientspace
15
2.3.2Grouphomomorphism,groupactionsandgroupequivariance
.16
2.3.3Homogeneousspacesandliftingfeaturemaps
16
2.3.4FeaturemapsinG-CNNs
17
2.3.5Groupequivariantneuralnetworks
18
3MetaFun:Meta-LearningwithIterativeFunctionalUpdates
20
3.1Introduction
20
3.2MetaFun
22
3.2.1Learningfunctionaltaskrepresentation
23
3.2.2MetaFunforregressionandclassification
26
3.3Relatedwork
27
ii
3.4Experiments
31
3.4.11-Dfunctionregression
31
3.4.2Classification:miniImageNetandtieredImageNet
33
3.4.3Ablationstudy
36
3.5Conclusionsandfuturework
37
3.6Supplementarymaterials
38
3.6.1Functionalgradientdescent
38
ReproducingkernelHilbertspace
38
Functionalgradients
39
Functionalgradientdescent
40
3.6.2Experimentaldetails
40
4DeepStochasticProcessesviaFunctionalMarkovTransitionOpera-
tors
44
4.1Introduction
44
4.2Background
46
4.3Markovneuralprocesses
47
4.3.1AmoregeneralformofNeuralProcessdensityfunctions
47
4.3.2Markovchainsinfunctionspace
48
4.3.3Parameterisation,inferenceandtraining
49
4.4Relatedwork
52
4.5Experiments
54
4.5.11Dfunctionregression
54
4.5.2Contextualbandits
55
4.5.3Geologicalinference
56
4.6Discussion
58
4.7Supplementarymaterials
59
4.7.1Proofs
59
60
4.7.2Implementationdetails
63
4.7.3Data
63
Modelarchitecturesandhyperparameters
65
Computationalcostsandresources
66
4.7.4Broaderimpacts
67
iii
5GroupEquivariantSubsampling
68
5.1Introduction
68
5.2Equivariantsubsamplingandupsampling
70
5.2.1TranslationequivariantsubsamplingforCNNs
70
5.2.2Groupequivariantsubsamplingandupsampling
72
5.2.3ConstructingΦ
75
5.3Application:Groupequivariantautoencoders
75
5.4Relatedwork
77
5.5Experiments
79
5.5.1Basicproperties:Equivariance,disentanglementandout-of-
distributiongeneralization
80
5.5.2Singleobject
81
5.5.3Multipleobjects
82
5.6Conclusions,limitationsandfuturework
83
5.7Supplementarymaterials
84
5.7.1Equivariantsubsamplingandupsampling
84
ConstructingΦ
84
Multiplesubsamplinglayers
85
5.7.2Groupequivariantautoencoders
87
5.7.3Proofs
88
5.7.4Implementationdetails
93
Data
93
Modelarchitectures
94
Hyperparameters
95
Computationalresources
95
6ConclusionsandFutureOutlook
96
Bibliography
99
1
Chapter1
Introduction
1.1Motivation
Recentbreakthroughsindeeplearningcanbelargelyattributedtothevastamountofdataavailableandtheadvancementofcomputationalresources[
Dengetal.,
2009,
Rainaetal.,
2009,
Silveretal.,
2016,
Jumperetal.,
2021,
Brownetal.,
2020a]
.Whiletrainingonlargedatasetsenablesdeeplearningmodelstoexcelincertaintasks,manyreal-worldapplicationsonlyprovidelimiteddataforaspecifictask.Forinstance,inmedicalfields,obtainingdata,especiallyforrarediseases,ischallengingandoftenexpensive.Indrugdevelopmentorrecommendationsystems,therewillalwaysbeinsufficientdatafornewdrugs/users,eventhoughabundantdataexistsforotherdrugsorusers.Therefore,toapplydeeplearningtothesefields,itisvitaltodevelopsystemsthataredata-efficient.Moreover,foradvancedAIsystems,data-efficiencycanbeacrucialingredient:Firstly,AIsystemsshouldbeabletogeneralizebeyondspecificdatadistributionswithoutrelyingondata;forinstance,animagerecognitionsystemshouldrecognizeobjectsregardlessoftheirpositionororientation.Secondly,humanintelligencecanoftensolvenewtaskswithjustafewexamples.Thus,forAItoemulatehuman-likeintelligence,itshouldalsohavesuchcapability.
FromaBayesianperspective,learninginvolvesupdatingourbeliefsaboutamodel(representedbyθ)giventhedata,i.e.p(θ|Ddata).Foramodeltolearnefficientlyfromasmallamountofdata,it’simportanttostartwithagoodinitialguessor"prior"p(θ).Inthispaper,welookattwodirectionstoobtainsuchpriorfordata-efficientlearning:Thefirstismeta-learning,whichlearnstheprior(orthesharedknowledge)from
2
similartasks.Itcanbeunderstoodas"learningtolearnmoreefficiently".Thesecondissymmetriesindeeplearning,whichservesasaknownpriorforcertainproblems.Symmetry,afundamentalconceptinphysics,representsaformofpriorknowledgethatisubiquitouslyobservedthroughoutourphysicalworld.
Meta-learningtacklesaspecificscenarioinwhichthevastpoolofdatacanbeviewedasmanysmalldatasets,eachrepresentingadistincttask.Yet,thesetaskscontainunderlyingsharedknowledgethatcanbeharnessedtoaddressnewtaskswithinthesamecategory.Thisscenarioisprevalentinmanyapplications.Take,forinstance,anonlineretailcompanywithdatafromcustomersworldwide.Thedataassociatedwitheachuseristypicallysparse.Inthiscontext,predictingbehavioursforeachuserconstitutesanindividualtask,butpatternsamongdifferentusersoftenexhibitsimilarities.Meta-learningalgorithmsaredesignedtohandlesuchcircumstances.Thegoalofmeta-learningistolearndata-efficientlearningalgorithmsthatcanlaterbeappliedtoaparticulartask.Thetrainingdataformeta-learningcomprisesnumerousrelatedtasks,eachwithalimitedsetofdatapoints.Afterthemeta-learningphase,thelearnedlearningalgorithmscansolveanewtaskinadata-efficientmanner.Incontrast,theaimofconventionalsupervisedlearningisjusttolearnapredictivemodel.
Meta-learningproblemscanbetackledfromvariousperspectives,andtheseap-proachescanbeunderstoodthroughdifferentviewpointssuchasoptimization-basedap-proaches[
RaviandLarochelle,
2016,
Finnetal.,
2017a
],metric-basedapproaches[
Koch,
2015
,
Vinyalsetal.,
2016,
Sungetal.,
2018,
Snelletal.,
2017],andmodel-based
approaches[
Santoroetal.,
2016,
Mishraetal.,
2018,
Garneloetal.,
2018a
],amongothers.Notethattheseviewsarenotexclusive.Forexample,methodssuchasprototypicalNetworks[
Snelletal.,
2017
],MAML[
Finnetal.,
2017a
],ML-PIP[
Gordon
etal.
,
2018
]etc.canbereformulatedunderamodel-basedframeworkthatusesanencoder-decodersetup.Inthissetup,theencoderproducesataskrepresentationusingtrainingdata,andthedecoderthenmakespredictionsbasedonthetaskrep-resentation.Theseapproachestransformthemeta-learningchallengetoresemblearegularlearningprobleminvolvingsequences,anditisalsomorecomputationallyefficientifnogradientcomputationisinvolvedinboththeencoderandthedecoderlikecnp-typemodels[
Garneloetal.,
2018a]
.OurstudyinChapter
3
explicitlyadoptsthisencoder-decoderframeworkformeta-learning.Byusingafunctionaltaskrepresentation,anditerativelyupdatingtherepresentationdirectlyinfunctionspace,
3
wedemonstratethatencoder-decoderapproacheswithoutgradientinformationcanalsobecompetitivewithotherapproaches,whichhasnotbeenshownbefore.
Furthermore,becausetrainingdataforeachtaskinmeta-learningisoftenlimited,uncertaintyestimationbecomescrucial.StochasticProcesses(sps)(e.g.GaussianProcesses(gps))canbeusedtomakepredictionswithuncertaintyestimation.Thus,learningtheseprocessescanbeseenasawaytoapproachmeta-learningwithuncer-taintyinmind.InChapter
4
,weproposeanewframeworktoconstructexpressiveneuralparameterisedspsbyparameterisingMarkovtransitionsinfunctionspace.
Unlikemeta-learningabove,whichdiscoverssharedknowledgefromrelatedtasks,symmetryservesasadirectformofpriororinductivebias,integratedintodeeplearningmodelswithouttheneedforpre-training.Symmetriesrefertotransformationsthatmaintaincertainpropertiesofanobjectofinterestunchanged.Theseincludetransformationssuchasimagetranslation,rotation,orpermutationofsetelements.Byincorporatingthesesymmetriesintodeeplearningmodels,ensuringthattheoutputsremainconsistent(thesameorundergothecorrespondingtransformation)despiteinputtransformations,themodelinherentlygeneralizestotransformedinputs.Consequently,deeplearningmodelsequippedwiththesesymmetriesnotonlybecomemoredata-efficientbutalsogeneralizebetter.AsimpleexampleofthisisConvolutinalNeuralNetworks(cnns),whichareinvarianttoinputtranslationsforclassificationtasks,andperformsignificantlybettercomparedtoplainfeed-forwardnetworks.Earlierresearchhasintroducedmanymethodstobuildconvolutional[
Cohenand
Welling,
2016,
2017,
Cohenetal.,
2019]andattentionblocks[Hutchinsonetal.,
2021,
Fuchsetal.,
2020
]thatareequivariantw.r.t.tovarioussymmetries.However,thepoolinglayersorsubsampling/upsamplinglayerscommonlyusedinvariousdeeplearningarchitecturesbreakthesesymmetries[
Zhang,
2019]
.InChapter
5,wepresent
groupequivariantsubsampling/upsamplinglayersthathaveexactequivariance.
1.2Thesisoutline
InChapter
2
,weprovideashortintroductiontometa-learning,neuralprocessesandsymmetriesindeeplearning,tosetthestageforlaterchapters.
InChapter
3
,weintroduceaniterativefunctionalencoder-decodermethodforsu-pervisedmeta-learning,whichisbasedonNeuralProcesses(nps)[
Garneloetal.,
4
2018a
,b]
.Onstandardfew-shotclassificationbenchmarkslikeminiImageNetandtieredImageNet,itisdemonstratedthatmeta-learningmethodsbasedontheneuralprocessfamilycanbecompetitiveorevenoutperformgradient-basedmethodssuchasMAML[
Finnetal.,
2017a
]andLEO[
Rusuetal.,
2019]
.
InChapter
4
,weintroduceMarkovNeuralProcesses(MNPs),anewclassofStochasticProcesses(SPs)whichareconstructedbystackingsequencesofneuralparameterisedMarkovtransitionoperatorsinfunctionspace.Therefore,theproposediterativeconstructionaddssubstantialflexibilityandexpressivitytotheoriginalframeworkofNeuralProcesses(NPs)withoutcompromisingconsistencyoraddingrestrictions.OurexperimentsdemonstrateclearadvantagesofMNPsoverbaselinemodelsonavarietyoftasks.It’snoteworthythatspmodelscanbeviewedthroughameta-learninglens.Sotheproposedmethodcanalsobeseenasameta-learningapproachwithprincipleduncertaintyestimation.
Chapter
5
,wefirstintroducetranslationequivariantsubsampling/upsamplinglayersthatcanbeusedtoconstructexacttranslationequivariantCNNs.Wethengeneralisetheselayersbeyondtranslationstogeneralgroups,thusproposinggroupequivariantsubsampling/upsampling.Weusetheselayerstoconstructgroupequivariantautoen-coders(GAEs)thatallowustolearnlow-dimensionalequivariantrepresentations.Weempiricallyverifyonimagesthattherepresentationsareindeedequivarianttoinputtranslationsandrotations,andthusgeneralisewelltounseenpositionsandorienta-tions.WefurtheruseGAEsinmodelsthatlearnobject-centricrepresentationsonmulti-objectdatasets,andshowimproveddataefficiencyanddecompositioncomparedtonon-equivariantbaselines.
InChapter
6
,wesummarizeourfindingsandexplorepotentialavenuesforfutureresearchtofurtheradvancethefield.
1.3Papers
Thisisanintegratedthesisandincludesthefollowingpublishedpapers:Chapter3contains:
Xu,J.,Ton,J.F.,Kim,H.,Kosiorek,A.,&Teh,Y.W.Metafun:Meta-
5
learningwithiterativefunctionalupdates.InternationalConferenceon
MachineLearning(ICML),2020[
Xuetal.,
2020]
Chapter4contains:
Xu,J.,Kim,H.,Rainforth,T.,&Teh,Y.(2021).Groupequivariantsub-sampling.AdvancesinNeuralInformationProcessingSystems(NeurIPS),2021[
Xuetal.,
2021]
Chapter5contains
Xu,J.,Dupont,E.,M?rtens,K.,Rainforth,T.,&Teh,Y.W.(2023).DeepStochasticProcessesviaFunctionalMarkovTransitionOperators.AdvancesinNeuralInformationProcessingSystems(NeurIPS),2023[
Xu
etal.
,
2023]
6
Chapter2
Background
2.1Meta-learning
2.1.1Conventionalsupervisedlearningandmeta-learning
Inconventionalsupervisedlearning,theobjectiveistolearnafunctionfthatmapsaninputfeaturevectorx∈Xtoanoutputlabely∈Y.Learningisbasedonexampleinput-outputpairsinatrainingsetDtrain={(xi,yi.Commontypesofsupervisedlearningtasksincluderegressionwhereoutputlabelsarereal-valued,andclassificationwheretheoutputlabelsrepresentdifferentclasses.Thefunctionf,oftenreferredto
asthepredictivemodel,isamemberofahypothesisclass,H:={f|f(x;?),?∈Rdφ}.
Foreachtask,thereisariskfunction?(y,f(x))whichmeasurespredictionerror.Asanexample,inthecontextofaregressiontask,?oftentakestheformofasquarederror,?(y,f(x))=(y?f(x))2.Thetrainingprocessofthemodelftranslatestosolvinganoptimizationproblemdefinedasfollows:
ItiscalledempiricalriskminimizationbecausethisobjectiveisanestimationofthepopulationriskE(xi,yi)~p(x,y)[?(yi,f(xi))]basedontheempiricaldistributionoftrainingdata.
7
Aftertraining,themodelshouldgeneralizeeffectivelywhenpresentedwithatestset,denotedasDtest={(xi,yim+1.Themodel’sperformancecanbeassessedusing
thetestrisk(f;Dtest)whichservesasanestimateoftheoverallpopulationrisk
usingunseendata.
Figure2.1:Dataforameta-classificationproblem.Boththemeta-trainingandmeta-testsetsconsistoftasks(redrectangles)andarepresumedtocomefromthesametaskdistributionp(T).Eachofthesetasksencompassesitsowntask-specifictrainingandtestsets,whicharecommonlyreferredtoasthecontext(yellowlabels)andthetarget(greylabels)respectively.
Inpractice,itiscommontohavescenarioswherelotsofsupervisedlearningtasksarerelatedtoeachother,yetthenumberofdatapointsforeachindividualtaskislimited.Meta-learningemergesasanewlearningparadigmtoaddresssuchchallenges.
Specifically,wehaveameta-trainingsetdefinedasMtrain={(Dt(a)in,Dt(s)t,?(j)
andameta-testsetgivenbyMtest={(Dt(a)in,Dt(s)t,?(j)M+1.Eachelementinthese
meta-datasetsisatupleconsistingofatrainingset(calledthecontext),atestset(calledthetarget)andariskfunction(typicallythesamewithinameta-dataset).This3-tuplecharacterizesataskTj(seeFigure
2.1
illustration).Insupervisedlearning,weusetrainingdatatotrainapredictivemodel,hopingitcangeneralizeacrosstheentiredatadistribution.Inmeta-learning,theassumptionisthatthereisacommontaskdistribution,denotedasp(T),fromwhichboththemeta-trainingsetandthemeta-testsetaredrawn.Meta-learningalgorithmsaimtousemeta-trainingdatatodiscoverlearningalgorithmsthatcangeneralizeacrosstheentiretaskdistribution.
Morespecifically,alearningalgorithmforasupervisedlearningtasktakesinatraining
8
setDtrain,ariskfunction?andoutputsapredictivemodel,writtenas:
=ΦA(chǔ)LGO(Dtrain,?).(2.2)
Since?isusuallyfixed,wewillomitthedependencyonitinsubsequentdiscussions.Foraparticulartask,thelearningalgorithmΦA(chǔ)LGOcanbeevaluatedbythetestriskofthelearnedpredictivemodel,denotedas:
(;Dtest).(2.3)
Meta-learningfindsalearningalgorithmbasedontasksfromthemeta-trainingsetMtrain,sothatthislearningalgorithmcanbemoreefficientlyappliedtonewtasks,andgeneralizesacrossthetaskdistributionp(T).Themeta-learningalgorithmcanberepresentedas:
ΦA(chǔ)LGO=MetaAlgo(Mtrain).(2.4)
Toevaluatethemeta-learningalgorithm,wecancompute:
Whileitresemblesthetestlossinsupervisedlearning,theaggregatedtestriskforataskreplacesthetraditionalriskfunctionforadatapoint.
Itisworthnotingthatwhilewefocusonsupervisedlearningtaskshere,meta-learningcanbeextendedtounsupervisedlearning[
EdwardsandStorkey,
2016,
Reedetal.,
2018
,
Hsuetal.,
2018]orreinforcementlearning[
Wangetal.,
2016,
Finnetal.,
2017a
,b]
.
2.1.2Differentviewsofmeta-learning
Bi-leveloptimizationviewLetusassumeboththepredictivemodelfandthelearningalgorithmΦA(chǔ)LGOcanbeparameterised,andtheparametersaredenotedas?andθaccordingly.Thatistosay,thelearningalgorithmcanbewrittenas:
?=ΦA(chǔ)LGO(Dtrain;θ).(2.6)
9
Meta-learningcanbeformulatedasthefollowingbi-leveloptimizationproblem:
wheretask-specificparameter?jdependsonθthroughtheinner-loopoptimization:
?j(θ)=ΦA(chǔ)LGO(Dt(a)in;θ)(2.8)
Manymeta-learningalgorithmsaredevelopedbasedonthisbi-leveloptimizationview,suchas
Finnetal.
[2017a],
Nicholetal.
[2018],
RaviandLarochelle
[2016]
.
HierarchicalmodelviewFromaprobabilisticperspective,thegenerativeprocessforeachtaskTjcanbeexpressedas:
θ~p(θ),?j~p(?j|θ),yi(j)~p(yi(j)|xi(j)?j,θ)(2.9)
BoththetrainingsetDt(a)inandthetestsetDt(s)tfollowthesamedistribution(as
illustratedinFigure
2.2
).Thiscanbeseenasaprobabilistichierarchicalmodelwhereθindicatesthehigh-levelglobalparametersforalltasksand?jdenotesthelow-levellocalparametersforeachtask.Inthiscontext,meta-learningisaboutinferringθfromlotsoftasksinthemeta-trainingset,thatisp(θ|Mtrain).Learning,ontheother
hand,infers?jgiventhetrainingsetDt(a)infortaskTj,thatisp(?j|θ,Dt(a)in).
(j)i
j=1,...
Figure2.2:Meta-learningashierarchicalmodels(AremakeofFigure1in
Gordon
etal.
[2018])
.Task-specificparameter?jdependsontheglobalparameterθ.Datapointsinboththecontextandthetargethavethesamegenerativeprocess,whichdependonbothθand?j.
Notethatp(?j|θ)canbeseenasapriorfortaskTjconditionedonθ.Therefore,meta-learningcanbeseenaslearninganempiricalpriorfromthemeta-trainingset.
Finnetal.
[2018],
Requeimaetal.
[2019]adoptsthisview
.
10
Model-basedviewAlearningalgorithmf=ΦA(chǔ)LGO(Dtrain)canbeseenasafunctionthattakesintheentiretrainingsetandoutputsapredictivemodel.ThemodelisthenusedtomakepredictionsontestdatainDtest.Thelearningandpredictionprocessescanthusbeconceptualizedassequence-to-sequencemappings.Forthesakeofbrevity,let’suseaconcisenotationfordatasequences,suchasx1:n={x1,x2,...,xn}.ForaspecifictaskTj,makingpredictionsfortestsetdatapointsbasedonthosefromthetrainingsetcanbedescribedasthefollowinginferencetask
p(ym+1:n|xm+1:n,x1:m,y1:m).(2.10)
Fromthisperspective,meta-learningisaboutcreatingthisconditionalmodel.Meta-learningonlydiffersfromconventionalsupervisedlearninginthatboththeinp
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度小區(qū)物業(yè)環(huán)境整治與垃圾分類統(tǒng)一管理合同3篇
- 2025年電梯安裝工程設(shè)計(jì)與施工質(zhì)量保證合同2篇
- 二零二五年度寶雞購房合同補(bǔ)充協(xié)議參考范本3篇
- 二零二五年度智能家居系統(tǒng)智能安防報(bào)警與處理服務(wù)合同
- 二零二五年度佛山旅游企業(yè)員工勞動(dòng)合同書(旅游服務(wù)責(zé)任)3篇
- 二零二五年度基本建設(shè)借貸合同-生態(tài)環(huán)保工程3篇
- 2025年度科研試驗(yàn)與推廣合同3篇
- 2025年度知識(shí)產(chǎn)權(quán)質(zhì)押融資合同(專利權(quán))3篇
- 二零二五年度外墻保溫施工技術(shù)咨詢合同3篇
- 二零二五年度智能倉儲(chǔ)物流技術(shù)服務(wù)分包合同范本2篇
- 大學(xué)生心理健康教育常見困擾與自我調(diào)適智慧樹知到期末考試答案章節(jié)答案2024年浙江師范大學(xué)
- 工程資金監(jiān)管協(xié)議范本
- 行測(cè)言語理解與表達(dá)真題及完整答案1套
- 肥尾效應(yīng)(前漸進(jìn)論、認(rèn)識(shí)論和應(yīng)用)
- 小學(xué)美術(shù)課堂案例分析
- 2024蒸壓硅酸鹽功能骨料在混凝土中應(yīng)用技術(shù)規(guī)程
- 企業(yè)管理干股入股合作協(xié)議書
- 2024年社區(qū)工作者考試必背1000題題庫【含答案】
- 開放系統(tǒng)10861《理工英語(4)》期末機(jī)考真題及答案(第109套)
- SYT 0452-2021 石油天然氣金屬管道焊接工藝評(píng)定-PDF解密
- 2024年江蘇醫(yī)藥職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫及答案解析
評(píng)論
0/150
提交評(píng)論