




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
TowardsData-EfficientDeepLearningwithMeta-LearningandSymmetries
JinXu
BalliolCollege
UniversityofOxford
AthesissubmittedforthedegreeofDoctorofPhilosophyinStatistics
Trinity2023
2
Acknowledgements
Firstandforemost,Iwanttoexpressmydeepgratitudetomysupervisors,Prof.Yee
WhyeTehandDr.TomRainforth.Theirunwaveringsupport,carefulguidance,andconstantinspirationhavebeeninvaluablethroughoutmyPhDjourney.Ithasbeenaprivilegetobementoredbythem,whoIregardasresearchrolemodels.Theirdepthandbreadthofknowledgehavebeenbothhumblingandenlightening.SpecialacknowledgementgoestoYeeWhye,whohasalwaysbeenconsiderateandreadytohelpintoughtimes.MyheartfeltthanksgotoTomforhisguidanceduringthechallengingtimesbroughtonbythepandemic.
IwouldliketoextendmygratitudetoallmycollaboratorsHyunjikKim,Jean-FrancoisTon,AdamKosiorek,EmilienDupont,andKasparM?rtens.TheirexpertiseandfeedbackhavebeencrucialinimprovingmyworkandIlearnagreatdealfromthem.AbigthankyoutoProf.RyanAdamsfromPrincetonUniversityandtomyinternshiphosts,JamesHensmanandMaxCrociatMicrosoftResearch.TheirmentorshipoutsideofmyPhDlifehasbeenanindispensablepartofmyresearchexperience.
Moreover,Ifeelextremelyfortunatetobesurroundedbyamazingandcaringfriendswhosenamesarenotpossibletoenumeratehere.AmongthemareEmilienDupont,Jean-FrancoisTon,CharlineLeLan,BobbyHe,SheheryarZaidi,QinyiZhang,GuneetDhillon,AndrewCampbell,ChrisWilliams,CarloAlfano,FaaizTaufiq,AnnaMenacherandothersfromourlovelyoffice1.17,HanwenXing,YanzhaoYang,NingMiao,ChaoZhang,Yutonglu,YixuanHe,XiLin,YuanZhou,FanWu,BohaoYaofromthedepartmentofstatistics,DunhongJin,SihanZhou,SijiaYao,HuiningYang,KevinWang,NataliaHong,HangYuan,KangningZhang,ChengyangWangandmanyothersfromotherdepartmentsatOxford,DenizOktay,SulinLiu,JennyZhanandothersfromPrincetonUniversity,internshippeersatMicrosoftResearchincludingAlexanderMeulemans,SalehAshkboosfromETH.
Aspecialthankstoalluniversityanddepartmentstaff,especiallyChrisCullenforhiskindandpatientsupportduringdifficulttimes,andtoJoannaStoneham,Stuart
3
McRobert,andotherswhoensuredasmoothPhDexperience.
Finally,aboveall,mydeepestthanksgotoYifanYuforherloveandcompanionship.SheimmenselyenrichedmytimeinOxford,bringingcolourandjoytomylife.Additionally,IameternallygratefultomyparentsChengxiangXuandFengChenforgivingmethefreedomtopursuemypassionsandfortheirunquestioningsupportthroughoutthisjourney.
4
Abstract
Recentadvancesindeeplearninghavebeensignificantlypropelledbytheincreasingavailabilityofdataandcomputationalresources.Whiletheabundanceofdataenablesmodelstoperformwellincertaindomains,therearereal-worldapplications,suchasinthemedicalfield,wherethedataisscarceordifficulttocollect.Furthermore,therearealsoscenarioswherethelargedatasetisbetterviewedaslotsofrelatedsmalldatasets,andthedatabecomesinsufficientforthetaskassociatedwithoneofthesmalldatasets.Itisalsonoteworthythathumanintelligenceoftenrequiresonlyahandfulofexamplestoperformwellonnewtasks,emphasizingtheimportanceofdesigningdata-efficientAIsystems.Thisthesisdelvesintotwostrategiestoaddressthischallenge:meta-learningandsymmetries.Meta-learningapproachesthedata-richenvironmentasacollectionofmanysmall,individualdatasets.Eachofthesesmalldatasetsrepresentsadistincttask,yetthereisunderlyingsharedknowledgebetweenthem.Harnessingthissharedknowledgeallowsforthedesignoflearningalgorithmsthatcanefficientlyaddressnewtaskswithinsimilardomains.Incomparison,symmetryisaformofdirectpriorknowledge.Byensuringthatmodels’predictionsremainconsistentdespiteanytransformationtotheirinputs,thesemodelsenjoybettersampleefficiencyandgeneralization.
Inthesubsequentchapters,wepresentnoveltechniquesandmodelswhichallaimatimprovingthedataefficiencyofdeeplearningsystems.Firstly,wedemonstratethesuccessofencoder-decoderstylemeta-learningmethodsbasedonConditionalNeuralProcesses(cnps).Secondly,weintroduceanewclassofexpressivemeta-learnedstochasticprocessmodelswhichareconstructedbystackingsequencesofneuralparameterisedMarkovtransitionoperatorsinfunctionspace.Finally,weproposegroupequivariantsubsampling/upsamplinglayerswhichtacklesthelossofequivarianceinconventionalsubsampling/upsamplinglayers.Theselayerscanbeusedtoconstructend-to-endequivariantmodelswithimproveddata-efficiency.
i
Contents
1Introduction
1
1.1Motivation
1
1.2Thesisoutline
3
1.3Papers
4
2Background
6
2.1Meta-learning
6
2.1.1Conventionalsupervisedlearningandmeta-learning
6
2.1.2Differentviewsofmeta-learning
8
2.1.3Commonapproachestometa-learning
10
2.2Neuralprocesses
11
2.2.1Stochasticprocesses
12
2.2.2Neuralprocessesasstochasticprocesses
12
2.2.3Neuralprocesstrainingobjectives
13
2.2.4Ameta-learningperspective
14
2.3Symmetriesindeeplearning
15
2.3.1Group,cosetandquotientspace
15
2.3.2Grouphomomorphism,groupactionsandgroupequivariance
.16
2.3.3Homogeneousspacesandliftingfeaturemaps
16
2.3.4FeaturemapsinG-CNNs
17
2.3.5Groupequivariantneuralnetworks
18
3MetaFun:Meta-LearningwithIterativeFunctionalUpdates
20
3.1Introduction
20
3.2MetaFun
22
3.2.1Learningfunctionaltaskrepresentation
23
3.2.2MetaFunforregressionandclassification
26
3.3Relatedwork
27
ii
3.4Experiments
31
3.4.11-Dfunctionregression
31
3.4.2Classification:miniImageNetandtieredImageNet
33
3.4.3Ablationstudy
36
3.5Conclusionsandfuturework
37
3.6Supplementarymaterials
38
3.6.1Functionalgradientdescent
38
ReproducingkernelHilbertspace
38
Functionalgradients
39
Functionalgradientdescent
40
3.6.2Experimentaldetails
40
4DeepStochasticProcessesviaFunctionalMarkovTransitionOpera-
tors
44
4.1Introduction
44
4.2Background
46
4.3Markovneuralprocesses
47
4.3.1AmoregeneralformofNeuralProcessdensityfunctions
47
4.3.2Markovchainsinfunctionspace
48
4.3.3Parameterisation,inferenceandtraining
49
4.4Relatedwork
52
4.5Experiments
54
4.5.11Dfunctionregression
54
4.5.2Contextualbandits
55
4.5.3Geologicalinference
56
4.6Discussion
58
4.7Supplementarymaterials
59
4.7.1Proofs
59
60
4.7.2Implementationdetails
63
4.7.3Data
63
Modelarchitecturesandhyperparameters
65
Computationalcostsandresources
66
4.7.4Broaderimpacts
67
iii
5GroupEquivariantSubsampling
68
5.1Introduction
68
5.2Equivariantsubsamplingandupsampling
70
5.2.1TranslationequivariantsubsamplingforCNNs
70
5.2.2Groupequivariantsubsamplingandupsampling
72
5.2.3ConstructingΦ
75
5.3Application:Groupequivariantautoencoders
75
5.4Relatedwork
77
5.5Experiments
79
5.5.1Basicproperties:Equivariance,disentanglementandout-of-
distributiongeneralization
80
5.5.2Singleobject
81
5.5.3Multipleobjects
82
5.6Conclusions,limitationsandfuturework
83
5.7Supplementarymaterials
84
5.7.1Equivariantsubsamplingandupsampling
84
ConstructingΦ
84
Multiplesubsamplinglayers
85
5.7.2Groupequivariantautoencoders
87
5.7.3Proofs
88
5.7.4Implementationdetails
93
Data
93
Modelarchitectures
94
Hyperparameters
95
Computationalresources
95
6ConclusionsandFutureOutlook
96
Bibliography
99
1
Chapter1
Introduction
1.1Motivation
Recentbreakthroughsindeeplearningcanbelargelyattributedtothevastamountofdataavailableandtheadvancementofcomputationalresources[
Dengetal.,
2009,
Rainaetal.,
2009,
Silveretal.,
2016,
Jumperetal.,
2021,
Brownetal.,
2020a]
.Whiletrainingonlargedatasetsenablesdeeplearningmodelstoexcelincertaintasks,manyreal-worldapplicationsonlyprovidelimiteddataforaspecifictask.Forinstance,inmedicalfields,obtainingdata,especiallyforrarediseases,ischallengingandoftenexpensive.Indrugdevelopmentorrecommendationsystems,therewillalwaysbeinsufficientdatafornewdrugs/users,eventhoughabundantdataexistsforotherdrugsorusers.Therefore,toapplydeeplearningtothesefields,itisvitaltodevelopsystemsthataredata-efficient.Moreover,foradvancedAIsystems,data-efficiencycanbeacrucialingredient:Firstly,AIsystemsshouldbeabletogeneralizebeyondspecificdatadistributionswithoutrelyingondata;forinstance,animagerecognitionsystemshouldrecognizeobjectsregardlessoftheirpositionororientation.Secondly,humanintelligencecanoftensolvenewtaskswithjustafewexamples.Thus,forAItoemulatehuman-likeintelligence,itshouldalsohavesuchcapability.
FromaBayesianperspective,learninginvolvesupdatingourbeliefsaboutamodel(representedbyθ)giventhedata,i.e.p(θ|Ddata).Foramodeltolearnefficientlyfromasmallamountofdata,it’simportanttostartwithagoodinitialguessor"prior"p(θ).Inthispaper,welookattwodirectionstoobtainsuchpriorfordata-efficientlearning:Thefirstismeta-learning,whichlearnstheprior(orthesharedknowledge)from
2
similartasks.Itcanbeunderstoodas"learningtolearnmoreefficiently".Thesecondissymmetriesindeeplearning,whichservesasaknownpriorforcertainproblems.Symmetry,afundamentalconceptinphysics,representsaformofpriorknowledgethatisubiquitouslyobservedthroughoutourphysicalworld.
Meta-learningtacklesaspecificscenarioinwhichthevastpoolofdatacanbeviewedasmanysmalldatasets,eachrepresentingadistincttask.Yet,thesetaskscontainunderlyingsharedknowledgethatcanbeharnessedtoaddressnewtaskswithinthesamecategory.Thisscenarioisprevalentinmanyapplications.Take,forinstance,anonlineretailcompanywithdatafromcustomersworldwide.Thedataassociatedwitheachuseristypicallysparse.Inthiscontext,predictingbehavioursforeachuserconstitutesanindividualtask,butpatternsamongdifferentusersoftenexhibitsimilarities.Meta-learningalgorithmsaredesignedtohandlesuchcircumstances.Thegoalofmeta-learningistolearndata-efficientlearningalgorithmsthatcanlaterbeappliedtoaparticulartask.Thetrainingdataformeta-learningcomprisesnumerousrelatedtasks,eachwithalimitedsetofdatapoints.Afterthemeta-learningphase,thelearnedlearningalgorithmscansolveanewtaskinadata-efficientmanner.Incontrast,theaimofconventionalsupervisedlearningisjusttolearnapredictivemodel.
Meta-learningproblemscanbetackledfromvariousperspectives,andtheseap-proachescanbeunderstoodthroughdifferentviewpointssuchasoptimization-basedap-proaches[
RaviandLarochelle,
2016,
Finnetal.,
2017a
],metric-basedapproaches[
Koch,
2015
,
Vinyalsetal.,
2016,
Sungetal.,
2018,
Snelletal.,
2017],andmodel-based
approaches[
Santoroetal.,
2016,
Mishraetal.,
2018,
Garneloetal.,
2018a
],amongothers.Notethattheseviewsarenotexclusive.Forexample,methodssuchasprototypicalNetworks[
Snelletal.,
2017
],MAML[
Finnetal.,
2017a
],ML-PIP[
Gordon
etal.
,
2018
]etc.canbereformulatedunderamodel-basedframeworkthatusesanencoder-decodersetup.Inthissetup,theencoderproducesataskrepresentationusingtrainingdata,andthedecoderthenmakespredictionsbasedonthetaskrep-resentation.Theseapproachestransformthemeta-learningchallengetoresemblearegularlearningprobleminvolvingsequences,anditisalsomorecomputationallyefficientifnogradientcomputationisinvolvedinboththeencoderandthedecoderlikecnp-typemodels[
Garneloetal.,
2018a]
.OurstudyinChapter
3
explicitlyadoptsthisencoder-decoderframeworkformeta-learning.Byusingafunctionaltaskrepresentation,anditerativelyupdatingtherepresentationdirectlyinfunctionspace,
3
wedemonstratethatencoder-decoderapproacheswithoutgradientinformationcanalsobecompetitivewithotherapproaches,whichhasnotbeenshownbefore.
Furthermore,becausetrainingdataforeachtaskinmeta-learningisoftenlimited,uncertaintyestimationbecomescrucial.StochasticProcesses(sps)(e.g.GaussianProcesses(gps))canbeusedtomakepredictionswithuncertaintyestimation.Thus,learningtheseprocessescanbeseenasawaytoapproachmeta-learningwithuncer-taintyinmind.InChapter
4
,weproposeanewframeworktoconstructexpressiveneuralparameterisedspsbyparameterisingMarkovtransitionsinfunctionspace.
Unlikemeta-learningabove,whichdiscoverssharedknowledgefromrelatedtasks,symmetryservesasadirectformofpriororinductivebias,integratedintodeeplearningmodelswithouttheneedforpre-training.Symmetriesrefertotransformationsthatmaintaincertainpropertiesofanobjectofinterestunchanged.Theseincludetransformationssuchasimagetranslation,rotation,orpermutationofsetelements.Byincorporatingthesesymmetriesintodeeplearningmodels,ensuringthattheoutputsremainconsistent(thesameorundergothecorrespondingtransformation)despiteinputtransformations,themodelinherentlygeneralizestotransformedinputs.Consequently,deeplearningmodelsequippedwiththesesymmetriesnotonlybecomemoredata-efficientbutalsogeneralizebetter.AsimpleexampleofthisisConvolutinalNeuralNetworks(cnns),whichareinvarianttoinputtranslationsforclassificationtasks,andperformsignificantlybettercomparedtoplainfeed-forwardnetworks.Earlierresearchhasintroducedmanymethodstobuildconvolutional[
Cohenand
Welling,
2016,
2017,
Cohenetal.,
2019]andattentionblocks[Hutchinsonetal.,
2021,
Fuchsetal.,
2020
]thatareequivariantw.r.t.tovarioussymmetries.However,thepoolinglayersorsubsampling/upsamplinglayerscommonlyusedinvariousdeeplearningarchitecturesbreakthesesymmetries[
Zhang,
2019]
.InChapter
5,wepresent
groupequivariantsubsampling/upsamplinglayersthathaveexactequivariance.
1.2Thesisoutline
InChapter
2
,weprovideashortintroductiontometa-learning,neuralprocessesandsymmetriesindeeplearning,tosetthestageforlaterchapters.
InChapter
3
,weintroduceaniterativefunctionalencoder-decodermethodforsu-pervisedmeta-learning,whichisbasedonNeuralProcesses(nps)[
Garneloetal.,
4
2018a
,b]
.Onstandardfew-shotclassificationbenchmarkslikeminiImageNetandtieredImageNet,itisdemonstratedthatmeta-learningmethodsbasedontheneuralprocessfamilycanbecompetitiveorevenoutperformgradient-basedmethodssuchasMAML[
Finnetal.,
2017a
]andLEO[
Rusuetal.,
2019]
.
InChapter
4
,weintroduceMarkovNeuralProcesses(MNPs),anewclassofStochasticProcesses(SPs)whichareconstructedbystackingsequencesofneuralparameterisedMarkovtransitionoperatorsinfunctionspace.Therefore,theproposediterativeconstructionaddssubstantialflexibilityandexpressivitytotheoriginalframeworkofNeuralProcesses(NPs)withoutcompromisingconsistencyoraddingrestrictions.OurexperimentsdemonstrateclearadvantagesofMNPsoverbaselinemodelsonavarietyoftasks.It’snoteworthythatspmodelscanbeviewedthroughameta-learninglens.Sotheproposedmethodcanalsobeseenasameta-learningapproachwithprincipleduncertaintyestimation.
Chapter
5
,wefirstintroducetranslationequivariantsubsampling/upsamplinglayersthatcanbeusedtoconstructexacttranslationequivariantCNNs.Wethengeneralisetheselayersbeyondtranslationstogeneralgroups,thusproposinggroupequivariantsubsampling/upsampling.Weusetheselayerstoconstructgroupequivariantautoen-coders(GAEs)thatallowustolearnlow-dimensionalequivariantrepresentations.Weempiricallyverifyonimagesthattherepresentationsareindeedequivarianttoinputtranslationsandrotations,andthusgeneralisewelltounseenpositionsandorienta-tions.WefurtheruseGAEsinmodelsthatlearnobject-centricrepresentationsonmulti-objectdatasets,andshowimproveddataefficiencyanddecompositioncomparedtonon-equivariantbaselines.
InChapter
6
,wesummarizeourfindingsandexplorepotentialavenuesforfutureresearchtofurtheradvancethefield.
1.3Papers
Thisisanintegratedthesisandincludesthefollowingpublishedpapers:Chapter3contains:
Xu,J.,Ton,J.F.,Kim,H.,Kosiorek,A.,&Teh,Y.W.Metafun:Meta-
5
learningwithiterativefunctionalupdates.InternationalConferenceon
MachineLearning(ICML),2020[
Xuetal.,
2020]
Chapter4contains:
Xu,J.,Kim,H.,Rainforth,T.,&Teh,Y.(2021).Groupequivariantsub-sampling.AdvancesinNeuralInformationProcessingSystems(NeurIPS),2021[
Xuetal.,
2021]
Chapter5contains
Xu,J.,Dupont,E.,M?rtens,K.,Rainforth,T.,&Teh,Y.W.(2023).DeepStochasticProcessesviaFunctionalMarkovTransitionOperators.AdvancesinNeuralInformationProcessingSystems(NeurIPS),2023[
Xu
etal.
,
2023]
6
Chapter2
Background
2.1Meta-learning
2.1.1Conventionalsupervisedlearningandmeta-learning
Inconventionalsupervisedlearning,theobjectiveistolearnafunctionfthatmapsaninputfeaturevectorx∈Xtoanoutputlabely∈Y.Learningisbasedonexampleinput-outputpairsinatrainingsetDtrain={(xi,yi.Commontypesofsupervisedlearningtasksincluderegressionwhereoutputlabelsarereal-valued,andclassificationwheretheoutputlabelsrepresentdifferentclasses.Thefunctionf,oftenreferredto
asthepredictivemodel,isamemberofahypothesisclass,H:={f|f(x;?),?∈Rdφ}.
Foreachtask,thereisariskfunction?(y,f(x))whichmeasurespredictionerror.Asanexample,inthecontextofaregressiontask,?oftentakestheformofasquarederror,?(y,f(x))=(y?f(x))2.Thetrainingprocessofthemodelftranslatestosolvinganoptimizationproblemdefinedasfollows:
ItiscalledempiricalriskminimizationbecausethisobjectiveisanestimationofthepopulationriskE(xi,yi)~p(x,y)[?(yi,f(xi))]basedontheempiricaldistributionoftrainingdata.
7
Aftertraining,themodelshouldgeneralizeeffectivelywhenpresentedwithatestset,denotedasDtest={(xi,yim+1.Themodel’sperformancecanbeassessedusing
thetestrisk(f;Dtest)whichservesasanestimateoftheoverallpopulationrisk
usingunseendata.
Figure2.1:Dataforameta-classificationproblem.Boththemeta-trainingandmeta-testsetsconsistoftasks(redrectangles)andarepresumedtocomefromthesametaskdistributionp(T).Eachofthesetasksencompassesitsowntask-specifictrainingandtestsets,whicharecommonlyreferredtoasthecontext(yellowlabels)andthetarget(greylabels)respectively.
Inpractice,itiscommontohavescenarioswherelotsofsupervisedlearningtasksarerelatedtoeachother,yetthenumberofdatapointsforeachindividualtaskislimited.Meta-learningemergesasanewlearningparadigmtoaddresssuchchallenges.
Specifically,wehaveameta-trainingsetdefinedasMtrain={(Dt(a)in,Dt(s)t,?(j)
andameta-testsetgivenbyMtest={(Dt(a)in,Dt(s)t,?(j)M+1.Eachelementinthese
meta-datasetsisatupleconsistingofatrainingset(calledthecontext),atestset(calledthetarget)andariskfunction(typicallythesamewithinameta-dataset).This3-tuplecharacterizesataskTj(seeFigure
2.1
illustration).Insupervisedlearning,weusetrainingdatatotrainapredictivemodel,hopingitcangeneralizeacrosstheentiredatadistribution.Inmeta-learning,theassumptionisthatthereisacommontaskdistribution,denotedasp(T),fromwhichboththemeta-trainingsetandthemeta-testsetaredrawn.Meta-learningalgorithmsaimtousemeta-trainingdatatodiscoverlearningalgorithmsthatcangeneralizeacrosstheentiretaskdistribution.
Morespecifically,alearningalgorithmforasupervisedlearningtasktakesinatraining
8
setDtrain,ariskfunction?andoutputsapredictivemodel,writtenas:
=ΦA(chǔ)LGO(Dtrain,?).(2.2)
Since?isusuallyfixed,wewillomitthedependencyonitinsubsequentdiscussions.Foraparticulartask,thelearningalgorithmΦA(chǔ)LGOcanbeevaluatedbythetestriskofthelearnedpredictivemodel,denotedas:
(;Dtest).(2.3)
Meta-learningfindsalearningalgorithmbasedontasksfromthemeta-trainingsetMtrain,sothatthislearningalgorithmcanbemoreefficientlyappliedtonewtasks,andgeneralizesacrossthetaskdistributionp(T).Themeta-learningalgorithmcanberepresentedas:
ΦA(chǔ)LGO=MetaAlgo(Mtrain).(2.4)
Toevaluatethemeta-learningalgorithm,wecancompute:
Whileitresemblesthetestlossinsupervisedlearning,theaggregatedtestriskforataskreplacesthetraditionalriskfunctionforadatapoint.
Itisworthnotingthatwhilewefocusonsupervisedlearningtaskshere,meta-learningcanbeextendedtounsupervisedlearning[
EdwardsandStorkey,
2016,
Reedetal.,
2018
,
Hsuetal.,
2018]orreinforcementlearning[
Wangetal.,
2016,
Finnetal.,
2017a
,b]
.
2.1.2Differentviewsofmeta-learning
Bi-leveloptimizationviewLetusassumeboththepredictivemodelfandthelearningalgorithmΦA(chǔ)LGOcanbeparameterised,andtheparametersaredenotedas?andθaccordingly.Thatistosay,thelearningalgorithmcanbewrittenas:
?=ΦA(chǔ)LGO(Dtrain;θ).(2.6)
9
Meta-learningcanbeformulatedasthefollowingbi-leveloptimizationproblem:
wheretask-specificparameter?jdependsonθthroughtheinner-loopoptimization:
?j(θ)=ΦA(chǔ)LGO(Dt(a)in;θ)(2.8)
Manymeta-learningalgorithmsaredevelopedbasedonthisbi-leveloptimizationview,suchas
Finnetal.
[2017a],
Nicholetal.
[2018],
RaviandLarochelle
[2016]
.
HierarchicalmodelviewFromaprobabilisticperspective,thegenerativeprocessforeachtaskTjcanbeexpressedas:
θ~p(θ),?j~p(?j|θ),yi(j)~p(yi(j)|xi(j)?j,θ)(2.9)
BoththetrainingsetDt(a)inandthetestsetDt(s)tfollowthesamedistribution(as
illustratedinFigure
2.2
).Thiscanbeseenasaprobabilistichierarchicalmodelwhereθindicatesthehigh-levelglobalparametersforalltasksand?jdenotesthelow-levellocalparametersforeachtask.Inthiscontext,meta-learningisaboutinferringθfromlotsoftasksinthemeta-trainingset,thatisp(θ|Mtrain).Learning,ontheother
hand,infers?jgiventhetrainingsetDt(a)infortaskTj,thatisp(?j|θ,Dt(a)in).
(j)i
j=1,...
Figure2.2:Meta-learningashierarchicalmodels(AremakeofFigure1in
Gordon
etal.
[2018])
.Task-specificparameter?jdependsontheglobalparameterθ.Datapointsinboththecontextandthetargethavethesamegenerativeprocess,whichdependonbothθand?j.
Notethatp(?j|θ)canbeseenasapriorfortaskTjconditionedonθ.Therefore,meta-learningcanbeseenaslearninganempiricalpriorfromthemeta-trainingset.
Finnetal.
[2018],
Requeimaetal.
[2019]adoptsthisview
.
10
Model-basedviewAlearningalgorithmf=ΦA(chǔ)LGO(Dtrain)canbeseenasafunctionthattakesintheentiretrainingsetandoutputsapredictivemodel.ThemodelisthenusedtomakepredictionsontestdatainDtest.Thelearningandpredictionprocessescanthusbeconceptualizedassequence-to-sequencemappings.Forthesakeofbrevity,let’suseaconcisenotationfordatasequences,suchasx1:n={x1,x2,...,xn}.ForaspecifictaskTj,makingpredictionsfortestsetdatapointsbasedonthosefromthetrainingsetcanbedescribedasthefollowinginferencetask
p(ym+1:n|xm+1:n,x1:m,y1:m).(2.10)
Fromthisperspective,meta-learningisaboutcreatingthisconditionalmodel.Meta-learningonlydiffersfromconventionalsupervisedlearninginthatboththeinp
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 IEC 80000-13:2025 EN/FR Quantities and units - Part 13: Information science and technology
- 食堂委托服務(wù)合同
- 消防工程安裝外包合同
- 汽車租賃三方合同書
- 商鋪長期租賃合同
- 重慶工程總承包合同
- 建筑工程合同管理法律法規(guī)
- 業(yè)務(wù)人員聘用合同
- 技術(shù)咨詢勞務(wù)合同
- 四川工程職業(yè)技術(shù)學(xué)院《口腔臨床醫(yī)學(xué)概論(口腔修復(fù)學(xué))》2023-2024學(xué)年第二學(xué)期期末試卷
- 腎包膜下血腫護(hù)理
- 租船問題(教學(xué)設(shè)計)-2023-2024學(xué)年四年級下冊數(shù)學(xué)人教版
- 2024年A特種設(shè)備相關(guān)管理考試題庫及答案
- 數(shù)字化智能化園區(qū)建設(shè)水平評價標(biāo)準(zhǔn)(征求意見稿)
- 外研版(三起點)小學(xué)英語三年級下冊全冊同步練習(xí)(含答案)
- 2024《整治形式主義為基層減負(fù)若干規(guī)定》全文課件
- 幼兒園 《十個人快樂大搬家》繪本
- 農(nóng)村建房清包工合同協(xié)議書
- (新版)電工三級-職業(yè)技能等級認(rèn)定考試題庫(學(xué)生用)
- 人美版四年級上冊美術(shù)(全冊)教案
- 《學(xué)前兒童健康教育(第2版)》全套教學(xué)課件
評論
0/150
提交評論