版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省鄭州市外國語高中2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.132.直線平分圓的周長,過點(diǎn)作圓的一條切線,切點(diǎn)為,則()A.5 B.C.3 D.3.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.4.函數(shù)f(x)=xex的單調(diào)增區(qū)間為()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)5.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.6.已知正實(shí)數(shù)x,y滿足4x+3y=4,則的最小值為()A. B.C. D.7.已知是等比數(shù)列,,,則()A. B.C. D.8.已知函數(shù),則的值為()A. B.C.0 D.19.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%10.定義域?yàn)榈暮瘮?shù)滿足,且的導(dǎo)函數(shù),則滿足的的集合為A. B.C. D.11.已知數(shù)列滿足:,數(shù)列的前n項(xiàng)和為,若恒成立,則的取值范圍是()A. B.C. D.12.中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為,實(shí)軸長為2,則雙曲線C的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和為,滿足,,則___________.14.已知雙曲線中心在坐標(biāo)原點(diǎn),左右焦點(diǎn)分別為,漸近線分別為,過點(diǎn)且與垂直的直線分別交于兩點(diǎn),且,則雙曲線的離心率為________15.若橢圓和圓(c為橢圓的半焦距)有四個不同的交點(diǎn),則橢圓的離心率的取值范圍是_____.16.唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系xOy中,設(shè)軍營所在平面區(qū)域?yàn)閧(x,y)|x2+y2≤},河岸線所在直線方程為x+2y-4=0.假定將軍從點(diǎn)P(,)處出發(fā),只要到達(dá)軍營所在區(qū)域即回到軍營,當(dāng)將軍選擇最短路程時,飲馬點(diǎn)A的縱坐標(biāo)為______.最短總路程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分別是AC、PB的中點(diǎn)(1)證明:EF∥平面PCD;(2)求證:平面PBD⊥平面PAC18.(12分)一款小游戲的規(guī)則如下:每盤游戲都需拋擲骰子三次,出現(xiàn)一次或兩次“6點(diǎn)”獲得15分,出現(xiàn)三次“6點(diǎn)”獲得120分,沒有出現(xiàn)“6點(diǎn)”則扣除12分(即獲得-12分)(Ⅰ)設(shè)每盤游戲中出現(xiàn)“6點(diǎn)”的次數(shù)為X,求X的分布列;(Ⅱ)玩兩盤游戲,求兩盤中至少有一盤獲得15分概率;(Ⅲ)玩過這款游戲的許多人發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識分析解釋上述現(xiàn)象19.(12分)在對某老舊小區(qū)污水分流改造時,需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價為400元/平方米,中間兩道隔墻的建造單價為248元/平方米,池底的建造單價為80元/平方米,池蓋的建造單價為100元/平方米,建造此污水處理池相關(guān)人員的勞務(wù)費(fèi)以及其他費(fèi)用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關(guān)規(guī)定執(zhí)行,計(jì)算時忽略不計(jì))(1)現(xiàn)有財(cái)政撥款9萬元,如果將污水處理池的寬建成9米,那么9萬元的撥款是否夠用?(2)能否通過合理的設(shè)計(jì)污水處理池的長和寬,使總費(fèi)用最低?最低費(fèi)用為多少萬元?20.(12分)已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交直線于點(diǎn),點(diǎn)的軌跡記為曲線.(1)求曲線的方程;(2)已知曲線上一點(diǎn),動圓,且點(diǎn)在圓外,過點(diǎn)作圓的兩條切線分別交曲線于點(diǎn),.(i)求證:直線的斜率為定值;(ii)若直線與交于點(diǎn),且時,求直線的方程.21.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.22.(10分)如圖,在四棱錐中,底面為菱形,,底面,,是的中點(diǎn).(1)求證:平面;(2)求證:平面平面;(3)設(shè)點(diǎn)是平面上任意一點(diǎn),直接寫出線段長度最小值.(不需證明)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點(diǎn)時截距最小,求出點(diǎn)A坐標(biāo),代入目標(biāo)式即可.【詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點(diǎn)時截距最小,由,得,則.故選:C.2、B【解析】根據(jù)圓的性質(zhì),結(jié)合圓的切線的性質(zhì)進(jìn)行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因?yàn)橹本€平分圓的周長,所以圓心在直線上,故,因此,,所以有,所以,故選:B3、C【解析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【詳解】因?yàn)?,又,所以,,又,即,,所以離心率故選:C4、D【解析】求出,令可得答案.【詳解】由已知得,令,得,故函數(shù)f(x)=xex的單調(diào)增區(qū)間為(-1,+∞).故選:D.5、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B6、A【解析】將4x+3y=4變形為含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由換元法、基本不等式換“1”的代換求解即可【詳解】由正實(shí)數(shù)x,y滿足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,當(dāng)且僅當(dāng)時取等號,∴的最小值為.故選:A7、D【解析】由,,可求出公比,從而可求出等比數(shù)的通項(xiàng)公式,則可求出,得數(shù)列是一個等比數(shù)列,然后利用等比數(shù)的求和公式可求得答案【詳解】由題得.所以,所以.所以,所以數(shù)列是一個等比數(shù)列.所以=.故選:D8、B【解析】對函數(shù)求導(dǎo),然后將代入導(dǎo)數(shù)中可得結(jié)果.【詳解】,則,則,故選:B9、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.10、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進(jìn)而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因?yàn)閒′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因?yàn)閒(1)=1,所以g(1)=2f(1)-1-1=0.所以當(dāng)x<1時,g(x)<0,即2f(x)<x+1.故選B.【點(diǎn)睛】本題主要考察導(dǎo)數(shù)的運(yùn)算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題11、D【解析】由于,所以利用裂項(xiàng)相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因?yàn)?,?dāng)且僅當(dāng),即時取等號,所以故選:D12、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進(jìn)行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等比數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,即可得到答案.【詳解】由題意各項(xiàng)均為正數(shù)的等比數(shù)列得:,故答案為:14、【解析】判斷出三角形的形狀,求得點(diǎn)坐標(biāo),由此列方程求得,進(jìn)而求得雙曲線的離心率.【詳解】依題意設(shè)雙曲線方程為,雙曲線的漸近線方程為,右焦點(diǎn),不妨設(shè).由于,所以是線段的中點(diǎn),由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡得,所以雙曲線的離心率為.故答案為:15、【解析】當(dāng)圓的直徑介于橢圓長軸和短軸長度范圍之間時,橢圓和圓有四個不同的焦點(diǎn),由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個焦點(diǎn),故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點(diǎn)睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.16、①.②.【解析】求出P(,)關(guān)于直線x+2y4=0對稱點(diǎn)P'的坐標(biāo),再求出線段OP'與直線x+2y-4=0的交點(diǎn)A,再利用圓的幾何性質(zhì)可得結(jié)果.【詳解】設(shè)P(,)關(guān)于直線x+2y4=0的對稱點(diǎn)為P'(m,n),則解得因?yàn)閺狞c(diǎn)P到軍營總路程最短,所以A為線段OP'與直線x+2y4=0的交點(diǎn),聯(lián)立得y=(42y),解得y=.所以“將軍飲馬”的最短總路程為=,故答案為,.【點(diǎn)睛】本題主要考查對稱問題以及圓的幾何性質(zhì),屬于中檔題.解析幾何中點(diǎn)對稱問題,主要有以下三種題型:(1)點(diǎn)關(guān)于直線對稱,關(guān)于直線的對稱點(diǎn),利用,且點(diǎn)在對稱軸上,列方程組求解即可;(2)直線關(guān)于直線對稱,利用已知直線與對稱軸的交點(diǎn)以及直線上特殊點(diǎn)的對稱點(diǎn)(利用(1)求解),兩點(diǎn)式求對稱直線方程;(3)曲線關(guān)于直線對稱,結(jié)合方法(1)利用逆代法求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)連結(jié),證明EF∥PD即可;(2)證明BD⊥平面PAC即可【小問1詳解】連結(jié),則是的中點(diǎn),又是的中點(diǎn),,又平面,面,平面【小問2詳解】∵PA⊥AB,PA⊥AD,AB∩AD=A,AB、AD平面ABCD,∴PA⊥平面ABCD,∵BD平面ABCD,∴PA⊥BD,是菱形,,又,平面,又平面,∴平面平面﹒18、(Ⅰ)分布列見解析(Ⅱ)(Ⅲ)見解析【解析】(Ⅰ)先得到可能的取值為,,,,根據(jù)每次拋擲骰子,出現(xiàn)“6點(diǎn)”的概率為,得到每種取值的概率,得到分布列;(Ⅱ)計(jì)算出每盤游戲沒有獲得15分的概率,從而得到兩盤中至少有一盤獲得15分的概率;(Ⅲ)設(shè)每盤游戲得分為,得到的分布列和數(shù)學(xué)期望,從而得到結(jié)論.【詳解】解:(Ⅰ)可能的取值為,,,.每次拋擲骰子,出現(xiàn)“6點(diǎn)”的概率為.,,,,所以X的分布列為:0123(Ⅱ)設(shè)每盤游戲沒有得到15分為事件,則.設(shè)“兩盤游戲中至少有一次獲得15分”為事件,則因此,玩兩盤游戲至少有一次獲得15分的概率為.(Ⅲ)設(shè)每盤游戲得分為.由(Ⅰ)知,的分布列為:Y-1215120P的數(shù)學(xué)期望為.這表明,獲得分?jǐn)?shù)的期望為負(fù)因此,多次游戲之后分?jǐn)?shù)減少的可能性更大【點(diǎn)睛】本題考查求隨機(jī)變量的分布列和數(shù)學(xué)期望,求互斥事件的概率,屬于中檔題.19、(1)不夠;(2)將污水處理池建成長為16.2米,寬為10米時,建造總費(fèi)用最低,最低費(fèi)用為90000元.【解析】(1)根據(jù)題意結(jié)合單價直接計(jì)算即可得出;(2)設(shè)污水處理池的寬為米,表示出總費(fèi)用,利用基本不等式可求.【小問1詳解】如果將污水處理池的寬建成9米,則長為(米),建造總費(fèi)用為:(元)因?yàn)?,所以如果污水處理池的寬建?米,那么9萬元的撥款是不夠用的.【小問2詳解】設(shè)污水處理池的寬為米,建造總費(fèi)用為元,則污水處理池的長為米.則因?yàn)?,等號僅當(dāng),即時成立,所以時建造總費(fèi)用取最小值90000,所以將污水處理池建成長為16.2米,寬為10米時,建造總費(fèi)用最低,最低費(fèi)用為90000元.20、(1)(2)(i)答案見解析(ii)或【解析】(1)通過幾何關(guān)系可知,且,由此可知點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且實(shí)軸長為的雙曲線,通過雙曲線的定義即可求解;(2)(i)設(shè)點(diǎn),,直線的方程為,將直線方程與雙曲線方程聯(lián)立利用韋達(dá)定理及求出,即得到直線的斜率為定值;(ii)由(i)可知,由已知可得,聯(lián)立方程即可求出,的值,代入即可求出的值,即可得到直線方程.【小問1詳解】由題意可知,∵,且,∴根據(jù)雙曲線的定義可知,點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且實(shí)軸長為的雙曲線,即,,,則點(diǎn)的軌跡方程為;【小問2詳解】(i)設(shè)點(diǎn),,直線的方程為,聯(lián)立得,其中,且,,,∵曲線上一點(diǎn),∴,由已知條件得直線和直線關(guān)于對稱,則,即,整理得,,,,即,則或,當(dāng),直線方程為,此直線過定點(diǎn),應(yīng)舍去,故直線的斜率為定值.(ii)由(i)可知,由已知得,即,當(dāng)時,,,即,,,解得或,但是當(dāng)時,,故應(yīng)舍去,當(dāng)時,直線方程為,當(dāng)時,,即,,,解得(舍去)或,當(dāng)時,直線方程為,故直線的方程為或.21、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識,考查空間想象能力、分析問題的能力、計(jì)算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標(biāo)系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點(diǎn)M(M∈平面PAB),點(diǎn)M即為所求的一個點(diǎn).理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點(diǎn)N,使得AP=PN,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過點(diǎn)A作AH⊥CE,交CE的延長線于點(diǎn)H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以AP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年學(xué)生會文藝部工作總結(jié)簡單版(三篇)
- 2024年學(xué)校圖書角圖書管理制度范文(五篇)
- 2024年學(xué)校各處室主要職責(zé)范文(二篇)
- 2024年大學(xué)文藝委員工作計(jì)劃模版(二篇)
- 2024年名師工作室個人工作計(jì)劃范文(二篇)
- 2023年網(wǎng)絡(luò)及通信協(xié)議處理軟件資金申請報(bào)告
- 2024年商場營業(yè)員個人工作總結(jié)(二篇)
- 2024年小學(xué)教導(dǎo)處工作計(jì)劃范文(七篇)
- 2024年各級人員安全生產(chǎn)崗位責(zé)任制范本(二篇)
- 2024年學(xué)校環(huán)境衛(wèi)生工作計(jì)劃例文(二篇)
- YC/T 336-2020煙葉收購站設(shè)計(jì)規(guī)范
- SB/T 10016-2008冷凍飲品冰棍
- 公開課課件拿來主義
- 機(jī)加工企業(yè)風(fēng)險(xiǎn)告知牌通用
- 管理運(yùn)籌學(xué)7運(yùn)輸問題課件
- 薪酬管理的工具和技術(shù)英文版課件
- 提高住院患者抗菌藥物治療前送檢率培訓(xùn)
- 最新病歷書寫規(guī)范課件
- 一年級上冊語文全冊課件
- 聚丙烯纖維課件
- 鐵礦粉燒結(jié)的基本理論
評論
0/150
提交評論