版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆湖南省邵東縣第三中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知下列命題:①“”的否定是“”;②已知為兩個命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④2.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.3.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.4.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A. B. C.7 D.25.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)6.某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內(nèi)外的觀眾可以通過網(wǎng)絡(luò)平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內(nèi)外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內(nèi)外的觀眾評分的平均數(shù)為,所有嘉賓與場內(nèi)外的觀眾評分的平均數(shù)為,則下列選項(xiàng)正確的是()A. B. C. D.7.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.8.如圖,設(shè)為內(nèi)一點(diǎn),且,則與的面積之比為A. B.C. D.9.雙曲線的漸近線方程是()A. B. C. D.10.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}11.在區(qū)間上隨機(jī)取一個實(shí)數(shù),使直線與圓相交的概率為()A. B. C. D.12.設(shè),是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則實(shí)數(shù)m的值是________.14.能說明“若對于任意的都成立,則在上是減函數(shù)”為假命題的一個函數(shù)是________.15.若,則________.16.已知二面角α﹣l﹣β為60°,在其內(nèi)部取點(diǎn)A,在半平面α,β內(nèi)分別取點(diǎn)B,C.若點(diǎn)A到棱l的距離為1,則△ABC的周長的最小值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為零的等差數(shù)列的前n項(xiàng)和為,,是與的等比中項(xiàng).(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.18.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)若曲線的切線方程為,求實(shí)數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.20.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動直線l交拋物線C:于點(diǎn)P,點(diǎn)F為C的焦點(diǎn).圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點(diǎn),過Q且垂直于的直線為,直線,分別與y軸相交于點(diǎn)A,當(dāng)線段AB的長度最小時,求s的值.21.(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實(shí)數(shù)a的取值范圍;(3)證明:對一切,都有成立.22.(10分)在△ABC中,角所對的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對每個命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B.【點(diǎn)睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).2、B【解析】
由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點(diǎn)睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、A【解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.4、B【解析】
根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【詳解】因?yàn)?,所以,所以,所以,故選:B【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)及前項(xiàng)和公式,屬于基礎(chǔ)題.5、D【解析】
求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.6、C【解析】
計(jì)算出、,進(jìn)而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.【點(diǎn)睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.7、C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識,是一道中檔題.8、A【解析】
作交于點(diǎn),根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點(diǎn),則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點(diǎn)睛】本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎(chǔ)題,作出合適的輔助線是本題的關(guān)鍵.9、C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點(diǎn)睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運(yùn)用.10、D【解析】
解一元二次不等式化簡集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧?,故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.11、D【解析】
利用直線與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計(jì)算,同時也考查了利用直線與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.12、C【解析】
根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因?yàn)?,,所以或,因?yàn)?,所以,故②對③:或,故③錯④:如圖因?yàn)?,,在?nèi)過點(diǎn)作直線的垂線,則直線,又因?yàn)椋O(shè)經(jīng)過和相交的平面與交于直線,則又,所以因?yàn)?,,所以,所以,故④?故選:C【點(diǎn)睛】考查線面平行或垂直的判斷,基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點(diǎn)睛】本題考查向量垂直的充要條件,向量數(shù)量積的坐標(biāo)運(yùn)算.14、答案不唯一,如【解析】
根據(jù)對基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.15、13【解析】
由導(dǎo)函數(shù)的應(yīng)用得:設(shè),,所以,,又,所以,即,由二項(xiàng)式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點(diǎn)睛】本題考查了導(dǎo)函數(shù)的應(yīng)用、二項(xiàng)式定理,屬于中檔題16、【解析】
作A關(guān)于平面α和β的對稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當(dāng)四點(diǎn)共線時長度最短,結(jié)合對稱性和余弦定理求解.【詳解】作A關(guān)于平面α和β的對稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當(dāng)M,B,C,N共線時,周長最小為MN設(shè)平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點(diǎn)睛】此題考查求空間三角形邊長的最值,關(guān)鍵在于根據(jù)幾何性質(zhì)找出對稱關(guān)系,結(jié)合解三角形知識求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意,建立首項(xiàng)和公差的方程組,通過基本量即可寫出前項(xiàng)和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因?yàn)?,所以,所?(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和的基本量的求解,涉及利用累加法求通項(xiàng)公式,屬綜合基礎(chǔ)題.18、(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)分類討論解絕對值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調(diào)性,得到只需,代入計(jì)算得到答案.【詳解】(Ⅰ)當(dāng)時,不等式為,變形為或或,解集為或.(Ⅱ)當(dāng)時,,由此可知在單調(diào)遞減,在單調(diào)遞增,當(dāng)時,同樣得到在單調(diào)遞減,在單調(diào)遞增,所以,存在滿足不等式,只需,即,解得.【點(diǎn)睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19、(1);(2)或【解析】
(1)根據(jù)解析式求得導(dǎo)函數(shù),設(shè)切點(diǎn)坐標(biāo)為,結(jié)合導(dǎo)數(shù)的幾何意義可得方程,構(gòu)造函數(shù),并求得,由導(dǎo)函數(shù)求得有最小值,進(jìn)而可知由唯一零點(diǎn),即可代入求得的值;(2)將解析式代入,結(jié)合零點(diǎn)定義化簡并分離參數(shù)得,構(gòu)造函數(shù),根據(jù)題意可知直線與曲線有兩個交點(diǎn);求得并令求得極值點(diǎn),列出表格判斷的單調(diào)性與極值,即可確定與有兩個交點(diǎn)時的取值范圍.【詳解】(1)依題意,,,設(shè)切點(diǎn)為,,故,故,則;令,,故當(dāng)時,,當(dāng)時,,故當(dāng)時,函數(shù)有最小值,由于,故有唯一實(shí)數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個零點(diǎn)”等價于“直線與曲線在有兩個交點(diǎn)”;由于.由,解得,.當(dāng)變化時,與的變化情況如下表所示:30+0極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增.又因?yàn)?,,,,故?dāng)或時,直線與曲線在上有兩個交點(diǎn),即當(dāng)或時,函數(shù)在區(qū)間上有兩個零點(diǎn).【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義應(yīng)用,由切線方程求參數(shù)值,構(gòu)造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點(diǎn)的意義及綜合應(yīng)用,屬于難題.20、(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點(diǎn)Q處的切線的斜率存在,由對稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因?yàn)閽佄锞€C的方程為,所以F的坐標(biāo)為,設(shè),因?yàn)閳AM與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點(diǎn),則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點(diǎn)Q處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時,取得極小值也是最小值,即AB取得最小值此時.【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于難題.21、(1)(2)((3)見證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 掛靠免責(zé)協(xié)議書范本
- 《防治腦血管病》課件
- 2024年智能交通企業(yè)無抵押企業(yè)間借款合同范本3篇
- 2024年消防救援高空作業(yè)責(zé)任限定合同
- 2025年黑龍江貨運(yùn)從業(yè)資格證模擬考試0題題庫答案
- 2025年福州道路運(yùn)輸從業(yè)資格證考試內(nèi)容是什么
- 2025年西安考從業(yè)資格證貨運(yùn)試題
- 2025年攀枝花貨運(yùn)從業(yè)資格證試題庫及答案
- 2024年物業(yè)前期服務(wù)綜合合同
- 《萬象城商業(yè)模式》課件
- 大學(xué)體育與健康課件:體育鍛煉與安全衛(wèi)生保健
- 學(xué)校食堂色標(biāo)管理制度、食品切配工用具色標(biāo)管理操作指南
- 部編語文五年級上冊詞語表注音版
- 1神州謠 課件(共50張PPT)
- 國家開放大學(xué)思想道德與法治社會實(shí)踐作業(yè)集合6篇
- 小學(xué)侵害未成年人強(qiáng)制報(bào)告制度
- 2023年飛行員基礎(chǔ)知識考試題庫(500題版)
- 公租房運(yùn)營管理服務(wù)投標(biāo)方案
- 能源管理系統(tǒng)EMS用戶需求說明書
- 人工智能對中學(xué)教學(xué)的影響與應(yīng)對策略
- 2668-人員招聘與培訓(xùn)實(shí)務(wù)
評論
0/150
提交評論