重慶市江北區(qū)2025屆數(shù)學(xué)九上開(kāi)學(xué)質(zhì)量檢測(cè)試題【含答案】_第1頁(yè)
重慶市江北區(qū)2025屆數(shù)學(xué)九上開(kāi)學(xué)質(zhì)量檢測(cè)試題【含答案】_第2頁(yè)
重慶市江北區(qū)2025屆數(shù)學(xué)九上開(kāi)學(xué)質(zhì)量檢測(cè)試題【含答案】_第3頁(yè)
重慶市江北區(qū)2025屆數(shù)學(xué)九上開(kāi)學(xué)質(zhì)量檢測(cè)試題【含答案】_第4頁(yè)
重慶市江北區(qū)2025屆數(shù)學(xué)九上開(kāi)學(xué)質(zhì)量檢測(cè)試題【含答案】_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共8頁(yè)重慶市江北區(qū)2025屆數(shù)學(xué)九上開(kāi)學(xué)質(zhì)量檢測(cè)試題題號(hào)一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)1、(4分)一組數(shù)據(jù)、、、、、的眾數(shù)是()A. B. C. D.2、(4分)一次演講比賽中,評(píng)委將從演講內(nèi)容、演講能力、演講效果三個(gè)方面為選手打分,然后再按演講內(nèi)容占50%、演講能力占40%、演講效果占10%的比例計(jì)算選手的綜合成績(jī).某選手的演講內(nèi)容、演講能力、演講效果成績(jī)依次為85,95,95,則該選手的綜合成績(jī)?yōu)椋ǎ〢.92 B.88 C.90 D.953、(4分)某平行四邊形的對(duì)角線長(zhǎng)為x,y,一邊長(zhǎng)為6,則x與y的值可能是()A.4和7 B.5和7 C.5和8 D.4和174、(4分)如圖,AC=AD,BC=BD,則有()A.AB垂直平分CD B.CD垂直平分ABC.AB與CD互相垂直平分 D.CD平分∠ACB5、(4分)如圖,點(diǎn)B、F、C、E在一條直線上,AB∥ED,AC∥FD,那么添加下列一個(gè)條件后,仍無(wú)法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC6、(4分)一個(gè)多邊形的每一個(gè)外角都等于40°,則這個(gè)多邊形的內(nèi)角和是.()A.360° B.980° C.1260° D.1620°7、(4分)下列各組數(shù)是三角形的三邊長(zhǎng),能組成直角三角形的一組數(shù)是()A.2,2,3 B.4,6,8 C.2,3, D.,,8、(4分)邊長(zhǎng)為3cm的菱形的周長(zhǎng)是()A.15cm B.12cm C.9cm D.3cm二、填空題(本大題共5個(gè)小題,每小題4分,共20分)9、(4分)若點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),則______.10、(4分)如圖,在中,,,平分,點(diǎn)是的中點(diǎn),若,則的長(zhǎng)為_(kāi)_________.11、(4分)在平面直角坐標(biāo)系中,將函數(shù)的圖象向上平移6個(gè)單位長(zhǎng)度,則平移后的圖象與軸的交點(diǎn)坐標(biāo)為_(kāi)_________.12、(4分)已知:函數(shù),,若,則__________(填“”或“”或“”).13、(4分)如圖,菱形的邊長(zhǎng)為2,點(diǎn),分別是邊,上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)的面積為,則的取值范圍是__.三、解答題(本大題共5個(gè)小題,共48分)14、(12分)如圖,在菱形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,延長(zhǎng)BC至F,使CF=BE,連接DF.(1)求證:四邊形AEFD是矩形;(2)若AC=4,∠ABC=60°,求矩形AEFD的面積.15、(8分)先化簡(jiǎn),再求值:,其中x=.16、(8分)如圖,在四邊形ABCD中,∠ADC=90°,AB=AC,E,F(xiàn)分別為AC,BC的中點(diǎn),連接EF,ED,F(xiàn)D.(1)求證:ED=EF;(2)若∠BAD=60°,AC平分∠BAD,AC=6,求DF的長(zhǎng).17、(10分)甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷(xiāo)售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買(mǎi)50元的門(mén)票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買(mǎi)門(mén)票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.(1)甲、乙兩采摘園優(yōu)惠前的草莓銷(xiāo)售價(jià)格是每千克元;(2)求、與x的函數(shù)表達(dá)式;(3)在圖中畫(huà)出與x的函數(shù)圖象,并寫(xiě)出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.18、(10分)已知:正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,過(guò)O點(diǎn)的兩直線OE、OF互相垂直,分別交AB、BC于E、F,連接EF.(1)求證:OE=OF;(2)若AE=4,CF=3,求EF的長(zhǎng);(3)若AB=8cm,請(qǐng)你計(jì)算四邊形OEBF的面積.B卷(50分)一、填空題(本大題共5個(gè)小題,每小題4分,共20分)19、(4分)已知函數(shù),當(dāng)=_______時(shí),直線過(guò)原點(diǎn);為_(kāi)______數(shù)時(shí),函數(shù)隨的增大而增大.20、(4分)抽取某校學(xué)生一個(gè)容量為150的樣本,測(cè)得學(xué)生身高后,得到身高頻數(shù)分布直方圖如圖,已知該校有學(xué)生1500人,則可以估計(jì)出該校身高位于160cm和165cm之間的學(xué)生大約有_______人.21、(4分)如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交BC的延長(zhǎng)線于F,若∠F=30°,DE=1,則EF的長(zhǎng)是_____.22、(4分)如圖,在正方形外取一點(diǎn),連接、、.過(guò)點(diǎn)作的垂線交于點(diǎn),連接.若,,下列結(jié)論:①;②;③點(diǎn)到直線的距離為;④,其中正確的結(jié)論有_____________(填序號(hào))23、(4分)如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE//AD,若AC=2,CE=4,則四邊形ACEB的周長(zhǎng)為▲.二、解答題(本大題共3個(gè)小題,共30分)24、(8分)如圖,直線l在平面直角坐標(biāo)系中,直線l與y軸交于點(diǎn)A,點(diǎn)B(-3,3)也在直線1上,將點(diǎn)B先向右平移1個(gè)單位長(zhǎng)度、再向下平移2個(gè)單位長(zhǎng)度得到點(diǎn)C,點(diǎn)C恰好也在直線l上.(1)求點(diǎn)C的坐標(biāo)和直線l的解析式(2)若將點(diǎn)C先向左平移3個(gè)單位長(zhǎng)度,再向上平移6個(gè)單位長(zhǎng)度得到點(diǎn)D,請(qǐng)你判斷點(diǎn)D是否在直線l上;(3)已知直線l:y=x+b經(jīng)過(guò)點(diǎn)B,與y軸交于點(diǎn)E,求△ABE的面積.25、(10分)心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開(kāi)始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)隨時(shí)間(分鐘)的變化規(guī)律如圖所示(其中都為線段)(1)分別求出線段和的函數(shù)解析式;(2)開(kāi)始上課后第分鐘時(shí)與第分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?(3)一道數(shù)學(xué)競(jìng)賽題,需要講分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?26、(12分)如圖1,為美化校園環(huán)境,某校計(jì)劃在一塊長(zhǎng)為20m,寬為15m的長(zhǎng)方形空地上修建一條寬為a(m)的甬道,余下的部分鋪設(shè)草坪建成綠地.(1)甬道的面積為m2,綠地的面積為m2(用含a的代數(shù)式表示);(2)已知某公園公司修建甬道,綠地的造價(jià)W1(元),W2(元)與修建面積S之間的函數(shù)關(guān)系如圖2所示.①園林公司修建一平方米的甬道,綠地的造價(jià)分別為元,元.②直接寫(xiě)出修建甬道的造價(jià)W1(元),修建綠地的造價(jià)W2(元)與a(m)的關(guān)系式;③如果學(xué)校決定由該公司承建此項(xiàng)目,并要求修建的甬道寬度不少于2m且不超過(guò)5m,那么甬道寬為多少時(shí),修建的甬道和綠地的總造價(jià)最低,最低總造價(jià)為多少元?

參考答案與詳細(xì)解析一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)1、D【解析】

根據(jù)眾數(shù)的定義進(jìn)行解答即可.【詳解】解:6出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是6;故選:D.此題考查了眾數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).2、C【解析】分析:根據(jù)加權(quán)平均數(shù)公式計(jì)算即可,若n個(gè)數(shù)x1,x2,x3,…,xn的權(quán)分別是w1,w2,w3,…,wn,則叫做這n個(gè)數(shù)的加權(quán)平均數(shù),此題w1+w2+w3+…+wn=50%+40%+10%=1.詳解:由題意得,85×50%+95×40%+95×10%=90(分).點(diǎn)睛:本題考查了加權(quán)平均數(shù)的計(jì)算,熟練掌握加權(quán)平均數(shù)的計(jì)算公式是解答本題的關(guān)鍵.3、C【解析】分析:如圖:因?yàn)槠叫兴倪呅蔚膶?duì)角線互相平分,所,,在中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,將各答案代入驗(yàn)證即可求得.詳解:A、∵,∴不可能;B、∵,∴不可能;C、∵,∴可能;D、,∴不可能;故選C..點(diǎn)睛:本題考查平行四邊形的性質(zhì)以及三角形的三邊關(guān)系定理.熟練掌握平行四邊形的性質(zhì)和三角形三條邊的關(guān)系式解答本題的關(guān)鍵.4、A【解析】

由AC=AD,BC=BD,可得點(diǎn)A在CD的垂直平分線上,點(diǎn)B在CD的垂直平分線上,又由兩點(diǎn)確定一條直線,可得AB是CD的垂直平分線.【詳解】解:∵AC=AD,BC=BD,∴點(diǎn)A在CD的垂直平分線上,點(diǎn)B在CD的垂直平分線上,∴AB是CD的垂直平分線.即AB垂直平分CD.故選:A.此題考查了線段垂直平分線的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5、C【解析】試題分析:解:選項(xiàng)A、添加AB=DE可用AAS進(jìn)行判定,故本選項(xiàng)錯(cuò)誤;選項(xiàng)B、添加AC=DF可用AAS進(jìn)行判定,故本選項(xiàng)錯(cuò)誤;選項(xiàng)C、添加∠A=∠D不能判定△ABC≌△DEF,故本選項(xiàng)正確;選項(xiàng)D、添加BF=EC可得出BC=EF,然后可用ASA進(jìn)行判定,故本選項(xiàng)錯(cuò)誤.故選C.考點(diǎn):全等三角形的判定.6、C【解析】

先利用360°÷40°求出多邊形的邊數(shù),再根據(jù)多邊形的內(nèi)角和公式(n-2)?180°計(jì)算即可求解.【詳解】解:360°÷40°=9,∴(9-2)?180°=1260°.故選:C.本題主要考查了正多邊形的外角與邊數(shù)的關(guān)系,求出多邊形的邊數(shù)是解題的關(guān)鍵.7、C【解析】

根據(jù)勾股定理的逆定理:如果三角形有兩邊的平方和等于第三邊的平方,那么這個(gè)是直角三角形判定則可.【詳解】解:A、22+22≠32,根據(jù)勾股定理的逆定理不是直角三角形,故此選項(xiàng)錯(cuò)誤;

B、42+62≠82,根據(jù)勾股定理的逆定理不是直角三角形,故此選項(xiàng)錯(cuò)誤;

C、22+32=(2,根據(jù)勾股定理的逆定理是直角三角形,故此選項(xiàng)正確;

D、()2+()2≠()2,根據(jù)勾股定理的逆定理不是直角三角形,故此選項(xiàng)錯(cuò)誤.

故選:C.本題考查了勾股定理的逆定理,在應(yīng)用勾股定理的逆定理時(shí),應(yīng)先認(rèn)真分析所給邊的大小關(guān)系,確定最大邊后,再驗(yàn)證兩條較小邊的平方和與最大邊的平方之間的關(guān)系,進(jìn)而作出判斷.8、B【解析】

由菱形的四條邊長(zhǎng)相等可求解.【詳解】解:∵菱形的邊長(zhǎng)為3cm∴這個(gè)菱形的周長(zhǎng)=4×3=12cm故選:B.本題考查了菱形的性質(zhì),熟練運(yùn)用菱形的性質(zhì)是本題的關(guān)鍵.二、填空題(本大題共5個(gè)小題,每小題4分,共20分)9、1【解析】∵點(diǎn)P(m,﹣2)與點(diǎn)Q(3,n)關(guān)于原點(diǎn)對(duì)稱(chēng),∴m=﹣3,n=2,則(m+n)2018=(﹣3+2)2018=1,故答案為1.10、1【解析】

過(guò)點(diǎn)D作DE⊥AB于E,根據(jù)直角三角形兩銳角互余求出∠A=10°,再根據(jù)直角三角形10°角所對(duì)的直角邊等于斜邊的一半求出DE,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得CD=DE,根據(jù)角平分線的定義求出∠CBD=10°,根據(jù)直角三角形10°角所對(duì)的直角邊等于斜邊的一半求出BD,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半求解.【詳解】如圖,過(guò)點(diǎn)D作DE⊥AB于E,

∵∠ACB=90°,∠ABC=60°,

∴∠A=90°-60°=10°,

∴DE=AD=×6=1,

又∵BD平分∠ABC,

∴CD=DE=1,

∵∠ABC=60°,BD平分∠ABC,

∴∠CBD=10°,

∴BD=2CD=2×1=6,

∵P點(diǎn)是BD的中點(diǎn),

∴CP=BD=×6=1.

故答案為:1.此題考查含10度角的直角三角形,角平分線的性質(zhì),熟記各性質(zhì)并作出輔助線是解題的關(guān)鍵.11、.【解析】

先根據(jù)平移特點(diǎn)求出新函數(shù)解析式,然后再求解新函數(shù)與x軸的交點(diǎn)坐標(biāo).【詳解】解:由“上加下減”的平移規(guī)律可知:將函數(shù)的圖象向上平移6個(gè)單位長(zhǎng)度所得到的的新函數(shù)的解析式為:,令,得:,解得:,∴與軸的交點(diǎn)坐標(biāo)為,故答案為:.本題考查的是一次函數(shù)的圖象與幾何變換,熟知平移的規(guī)律——上加下減,左加右減是解答此題的關(guān)鍵.12、<【解析】

聯(lián)立方程組,求出方程組的解,根據(jù)方程組的解以及函數(shù)的圖象進(jìn)行判斷即可得解.【詳解】根據(jù)題意聯(lián)立方程組得,解得,,畫(huà)函數(shù)圖象得,所以,當(dāng),則<.故答案為:<.本題考查了一次函數(shù)圖象的性質(zhì)與特征,求出兩直線的交點(diǎn)坐標(biāo)是解決此題的關(guān)鍵.13、.【解析】

先證明為正三角形,根據(jù)直角三角形的特點(diǎn)和三角函數(shù)進(jìn)行計(jì)算即可解答【詳解】菱形的邊長(zhǎng)為2,,和都為正三角形,,,,而,,;,,,即,為正三角形;設(shè),則,當(dāng)時(shí),最小,,當(dāng)與重合時(shí),最大,,.故答案為.此題考查等邊三角形的判定與性質(zhì)和菱形的性質(zhì),解題關(guān)鍵在于證明為正三角形三、解答題(本大題共5個(gè)小題,共48分)14、(1)見(jiàn)解析;(2).【解析】

(1)根據(jù)已知條件推知四邊形AEFD是平行四邊形,AE⊥BC,則平行四邊形AEFD是矩形;(2)先證明△ABE≌△DCF,得出△ABC是等邊三角形,在利用面積公式列式計(jì)算即可得解.【詳解】(1)證明:∵菱形ABCD∴AD∥BC,AD=BC∵CF=BE∴BC=EF∴AD∥EF,AD=EF∴四邊形AEFD是平行四邊形∵AE⊥BC∴∠AEF=90°∴平行四邊形AEFD是矩形(2)根據(jù)題意可知∠ABE=∠DCF,AB=CD,CF=BE∴△ABE≌△DCF(SAS)∴矩形AEFD的面積=菱形ABCD的面積∵∠ABC=60°,∴△ABC是等邊三角形AC=4,AO=2,AB=4,由菱形的對(duì)角線互相垂直可得BO=矩形AEFD的面積=菱形ABCD的面積=此題考查全等三角形的判定與性質(zhì),矩形的判定,菱形的性質(zhì),解題關(guān)鍵在于先求出AEFD是平行四邊形.15、,.【解析】

根據(jù)分式的運(yùn)算法則把所給的分式化為最簡(jiǎn),再將x的值代入計(jì)算即可求值.【詳解】===當(dāng)x=時(shí),原式=.本題考查了分式的化簡(jiǎn)求值,根據(jù)分式的運(yùn)算法則把所給的分式化為最簡(jiǎn)是解決問(wèn)題的關(guān)鍵.16、(1)見(jiàn)解析;(2)3.【解析】

(1)根據(jù)題意只要證明EF為△ABC的中位線,即可證明DE=EF.(2)只要證明為直角三角形,根據(jù)勾股定理即可計(jì)算DF的長(zhǎng)【詳解】(1)證明:∵∠ADC=90°,E為AC的中點(diǎn),∴DE=AE=AC.∵E、F分別為AC、BC的中點(diǎn),∴EF為△ABC的中位線,∴EF=AB.∵AB=AC,∴DE=EF.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=∠BAD=30°.由(1)可知EF∥AB,AE=DE,∴∠FEC=∠BAC=30°,∠DEC=2∠DAC=60°,∴∠FED=90°.∵AC=6,∴DE=EF=3,∴DF==3.本題主要考查等腰三角形的性質(zhì),這是考試的重點(diǎn)知識(shí),應(yīng)當(dāng)熟練掌握.17、(1)1;(2),;(3)<x<.【解析】試題分析:(1)根據(jù)單價(jià)=總價(jià)÷數(shù)量,即可解決問(wèn)題.(2)y1函數(shù)表達(dá)式=50+單價(jià)×數(shù)量,y2與x的函數(shù)表達(dá)式結(jié)合圖象利用待定系數(shù)法即可解決.(3)畫(huà)出函數(shù)圖象后y1在y2下面即可解決問(wèn)題.試題解析:(1)甲、乙兩采摘園優(yōu)惠前的草莓銷(xiāo)售價(jià)格是每千克10÷10=1元.故答案為1.(2)由題意,;(3)函數(shù)y1的圖象如圖所示,由解得:,所以點(diǎn)F坐標(biāo)(,125),由,解得:,所以點(diǎn)E坐標(biāo)(,650).由圖象可知甲采摘園所需總費(fèi)用較少時(shí)<x<.考點(diǎn):分段函數(shù);函數(shù)最值問(wèn)題.18、(1)見(jiàn)解析;(2)EF=5;(3)16cm2【解析】

(1)根據(jù)正方形的性質(zhì)可得OB=OC,∠OBE=∠OCF=45°,再利用同角的余角相等得到∠BOE=∠COF,從而推出△OBE≌△OCF,即可得OE=OF;(2)由(1)中的全等三角形可得BE=CF=3,由正方形的性質(zhì)可知AB=BC,推出BF=AE=4,再根據(jù)勾股定理求出EF即可;(3)由(1)中的全等三角形可將四邊形OEBF的面積轉(zhuǎn)化為△OBC的面積,等于正方形面積的四分之一.【詳解】(1)∵四邊形ABCD為正方形∴OB=OC,∠OBE=∠OCF=45°,BD⊥AC∴∠BOF+∠COF=90°,∵OE⊥OF∴∠BOF+∠BOE=90°∴∠BOE=∠COF在△OBE和△OCF中,∵∠OBE=∠OCF,OB=OC,∠BOE=∠COF∴△OBE≌△OCF(ASA)∴OE=OF(2)∵△OBE≌△OCF∴BE=CF=3,∵四邊形ABCD為正方形∴AB=BC即AE+BE=BF+CF∴BF=AE=4∴EF=(3)∵△OBE≌△OCF∴S四邊形OEBF=S△OBE+S△OBF=S△OCF+S△OBF=S△BOC=S正方形ABCD==16cm2本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì)以及勾股定理,熟練掌握正方形的性質(zhì)得出全等三角形的條件是解題的關(guān)鍵.一、填空題(本大題共5個(gè)小題,每小題4分,共20分)19、m>0【解析】分析:(1)根據(jù)正比例函數(shù)的性質(zhì)可得出m的值;(2)根據(jù)一次函數(shù)的性質(zhì)列出關(guān)于m的不等式,求出m的取值范圍即可.詳解:直線過(guò)原點(diǎn),則;即,解得:;函數(shù)隨的增大而增大,說(shuō)明,即,解得:;故分別應(yīng)填:;m>0.點(diǎn)睛:本題考查的是一次函數(shù)的圖象與系數(shù)的關(guān)系,熟知一次函數(shù)的定義及增減性是解答此題的關(guān)鍵.20、1【解析】

根據(jù)頻率直方圖的意義,由用樣本估計(jì)總體的方法可得樣本中160~165的人數(shù),進(jìn)而可得其頻率;計(jì)算可得1500名學(xué)生中身高位于160cm至165cm之間的人數(shù)【詳解】解:由題意可知:150名樣本中160~165的人數(shù)為30人,則其頻率為,則1500名學(xué)生中身高位于160cm至165cm之間大約有1500×=1人.故答案為1.本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力;同時(shí)本題很好的考查了用樣本來(lái)估計(jì)總體的數(shù)學(xué)思想.21、1【解析】

連接BE,根據(jù)垂直平分線的性質(zhì)、直角三角形的性質(zhì),說(shuō)明∠CBE=∠F,進(jìn)一步說(shuō)明BE=EF,,然后再根據(jù)直角三角形中,30°所對(duì)的直角邊等于斜邊的一半即可.【詳解】解:如圖:連接BE∵AB的垂直平分線DE交BC的延長(zhǎng)線于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=1DE=1×1=1,∴EF=1.故答案為:1.本題考查了垂直平分線的性質(zhì)、直角三角形的性質(zhì),其中靈活利用垂直平分線的性質(zhì)和直角三角形30°角所對(duì)的邊等于斜邊的一半是解答本題的關(guān)鍵.22、①②④【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;

②利用①中的全等,可得∠APD=∠AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;

③過(guò)B作BF⊥AE,交AE的延長(zhǎng)線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

④連接BD,求出△ABD的面積,然后減去△BDP的面積即可?!驹斀狻拷猓孩佟摺螮AB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,∴△APD≌△AEB(SAS);

故此選項(xiàng)成立;

②∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此選項(xiàng)成立;

③過(guò)B作BF⊥AE,交AE的延長(zhǎng)線于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,又∴點(diǎn)B到直線AE的距離為故此選項(xiàng)不正確;

④如圖,連接BD,在Rt△AEP中,

∵AE=AP=1,又∵△APD≌△AEB,=S正方形ABCD故此選項(xiàng)正確.

∴正確的有①②④,故答案為:①②④本題考查了全等三角形的判定和性質(zhì)的運(yùn)用、正方形的性質(zhì)的運(yùn)用、正方形和三角形的面積公式的運(yùn)用、勾股定理的運(yùn)用等知識(shí).23、10+.【解析】先證明四邊形ACED是平行四邊形,可得DE=AC=1.由勾股定理和中線的定義可求AB和EB的長(zhǎng),從而求出四邊形ACEB的周長(zhǎng).∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四邊形ACED是平行四邊形.∴DE=AC=1.在Rt△CDE中,DE=1,CE=2,由勾股定理得.∵D是BC的中點(diǎn),∴BC=1CD=2.在△ABC中,∠ACB=90°,由勾股定理得.∵D是BC的中點(diǎn),DE⊥BC,∴EB=EC=2.∴四邊形ACEB的周長(zhǎng)=AC+CE+EB+BA=10+.二、解答題(本大題共3個(gè)小題,共30分)24、(1)(-2,1),y=-2x-3(2)點(diǎn)D在直線l上,理由見(jiàn)解析(3)13.5【解析】

(1)根據(jù)平移的性質(zhì)得到點(diǎn)C的坐標(biāo);把點(diǎn)B、C的坐標(biāo)代入直線方程y=kx+b(k≠0)來(lái)求該直線方程(2)根據(jù)平移的性質(zhì)得到點(diǎn)D的坐標(biāo),然后將其代入(1)中的函數(shù)解析式進(jìn)行驗(yàn)證即可(3)根據(jù)點(diǎn)B的坐標(biāo)求得直線l的解析式,據(jù)此求得相關(guān)線段的長(zhǎng)度,并利用三角形的面積公式進(jìn)行解答【詳解】(1)∵B(-3,3),將點(diǎn)B先向右平移1個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度得到點(diǎn)C,∴-3+1=-2,3-2=1,∴C的坐標(biāo)為(-2,1)設(shè)直線l的解析式為y=kx+c,∵點(diǎn)B,C在直線l上代入得解得k=-2,c=-3,∴直線l的解析式為y=-2x-3(2)∵將點(diǎn)C先向左平移3個(gè)單位長(zhǎng)度,再向上平移6個(gè)單位長(zhǎng)度得到點(diǎn)D,C(-2,1),∴-2-3=-5,1+6=7∴D的坐標(biāo)為(-5,7)代入y=-2x-3時(shí),左邊=右邊,即點(diǎn)D在直線l上(3)把B的坐標(biāo)代入y=x+b得:3=-3+b,解得:b=6∴y=x+6,∴E的坐標(biāo)為(0,6),∵直線y=-2x-3與y軸交于A點(diǎn),∴A的坐標(biāo)為(0,-3)∴AE=6+3=9;∵B(-3,3)∴△ABE的面積為×9×|-3|=13.5此題考查一次函數(shù)圖象與幾何變換,利用平移的性質(zhì)是解題關(guān)鍵25、(1)線段AB的解析式為:y1=2x+1;線段CD的解析式為:;(2)第30分鐘注意力更集中;(3)能.【解析】

(1)分別

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論