福建省廈門(mén)外國(guó)語(yǔ)中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第1頁(yè)
福建省廈門(mén)外國(guó)語(yǔ)中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第2頁(yè)
福建省廈門(mén)外國(guó)語(yǔ)中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第3頁(yè)
福建省廈門(mén)外國(guó)語(yǔ)中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第4頁(yè)
福建省廈門(mén)外國(guó)語(yǔ)中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省廈門(mén)外國(guó)語(yǔ)中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知底面為邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)為的直四棱柱中,是上底面上的動(dòng)點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是()①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長(zhǎng)度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個(gè)面上的正投影長(zhǎng)度之和的最大值為.A. B. C. D.2.若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.03.設(shè)全集集合,則()A. B. C. D.4.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.5.已知向量,是單位向量,若,則()A. B. C. D.6.設(shè),分別是橢圓的左、右焦點(diǎn),過(guò)的直線交橢圓于,兩點(diǎn),且,,則橢圓的離心率為()A. B. C. D.7.已知雙曲線(,),以點(diǎn)()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A. B. C. D.8.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.39.已知函數(shù),,若成立,則的最小值是()A. B. C. D.10.某工廠一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說(shuō)法中錯(cuò)誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個(gè)月的平均收入為萬(wàn)元11.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.6312.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長(zhǎng)為1),則這個(gè)幾何體的體積是()A. B. C.16 D.32二、填空題:本題共4小題,每小題5分,共20分。13.已知為等差數(shù)列,為其前n項(xiàng)和,若,,則_______.14.將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣?小球在下落的過(guò)程中,將3次遇到黑色障礙物,最后落入袋或袋中.己知小球每次遇到黑色障礙物時(shí),向左、右兩邊下落的概率都是,則小球落入袋中的概率為_(kāi)_________.15.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對(duì)任意都有成立,則的值為_(kāi)_________.16.設(shè),滿足約束條件,若目標(biāo)函數(shù)的最大值為,則的最小值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點(diǎn),分別是,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.18.(12分)已知函數(shù)(,),且對(duì)任意,都有.(Ⅰ)用含的表達(dá)式表示;(Ⅱ)若存在兩個(gè)極值點(diǎn),,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.19.(12分)設(shè)(1)證明:當(dāng)時(shí),;(2)當(dāng)時(shí),求整數(shù)的最大值.(參考數(shù)據(jù):,)20.(12分)設(shè),函數(shù).(1)當(dāng)時(shí),求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.21.(12分)等比數(shù)列中,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)記為的前項(xiàng)和.若,求.22.(10分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

①與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,利用弧長(zhǎng)公式,可得結(jié)論;②當(dāng)在(或時(shí),與面所成角(或的正切值為最小,當(dāng)在時(shí),與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長(zhǎng),即可求出六個(gè)面上的正投影長(zhǎng)度之和.【詳解】如圖:①錯(cuò)誤,因?yàn)椋c點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,長(zhǎng)度為;②正確,因?yàn)槊婷?,所以點(diǎn)必須在面對(duì)角線上運(yùn)動(dòng),當(dāng)在(或)時(shí),與面所成角(或)的正切值為最?。橄碌酌婷鎸?duì)角線的交點(diǎn)),當(dāng)在時(shí),與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長(zhǎng)分別為,,,所以六個(gè)面上的正投影長(zhǎng)度之,當(dāng)且僅當(dāng)在時(shí)取等號(hào).故選:.【點(diǎn)睛】本題以命題的真假判斷為載體,考查了軌跡問(wèn)題、線面角、正投影等知識(shí)點(diǎn),綜合性強(qiáng),屬于難題.2、C【解析】

畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時(shí)函數(shù)取最大值為故答案選C【點(diǎn)睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時(shí),直線過(guò)可行域且在軸上截距最大時(shí),值最大,在軸截距最小時(shí),z值最小;當(dāng)時(shí),直線過(guò)可行域且在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大.3、A【解析】

先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點(diǎn)睛】本題考查集合的基本運(yùn)算,涉及到補(bǔ)集、交集運(yùn)算,是一道容易題.4、C【解析】

由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點(diǎn)睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡(jiǎn)單題.5、C【解析】

設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時(shí),;當(dāng)時(shí),;綜上所述:.故選:C.【點(diǎn)睛】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意的兩種情況.6、C【解析】

根據(jù)表示出線段長(zhǎng)度,由勾股定理,解出每條線段的長(zhǎng)度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項(xiàng).【點(diǎn)睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個(gè)常用方法,通過(guò)幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.7、A【解析】

求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點(diǎn),且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因?yàn)?,所以圓心到的距離為:,即,因?yàn)?,所以解得.故選A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計(jì)算能力,屬于中檔題.對(duì)于離心率求解問(wèn)題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個(gè)思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.8、A【解析】

由復(fù)數(shù)除法求出,再由模的定義計(jì)算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.9、A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求的最小值問(wèn)題,通過(guò)構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問(wèn)題,另外通過(guò)二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).10、D【解析】由圖可知,收入最高值為萬(wàn)元,收入最低值為萬(wàn)元,其比是,故項(xiàng)正確;結(jié)余最高為月份,為,故項(xiàng)正確;至月份的收入的變化率為至月份的收入的變化率相同,故項(xiàng)正確;前個(gè)月的平均收入為萬(wàn)元,故項(xiàng)錯(cuò)誤.綜上,故選.11、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時(shí),則的最大值為15,故選B.考點(diǎn):程序框圖.12、A【解析】幾何體為一個(gè)三棱錐,高為4,底面為一個(gè)等腰直角三角形,直角邊長(zhǎng)為4,所以體積是,選A.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】試題分析:因?yàn)槭堑炔顢?shù)列,所以,即,又,所以,所以.故答案為1.【考點(diǎn)】等差數(shù)列的基本性質(zhì)【名師點(diǎn)睛】在等差數(shù)列五個(gè)基本量,,,,中,已知其中三個(gè)量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式列出關(guān)于基本量的方程(組)來(lái)求余下的兩個(gè)量,計(jì)算時(shí)須注意整體代換思想及方程思想的應(yīng)用.14、【解析】記小球落入袋中的概率,則,又小球每次遇到黑色障礙物時(shí)一直向左或者一直向右下落,小球?qū)⒙淙氪?,所以有,則.故本題應(yīng)填.15、【解析】

由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個(gè)量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對(duì)應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時(shí),取得最大值,對(duì)任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.16、【解析】

先根據(jù)條件畫(huà)出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過(guò)可行域內(nèi)的點(diǎn)時(shí)取得最大值,從而得到一個(gè)關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當(dāng)直線過(guò)直線與直線的交點(diǎn)時(shí),目標(biāo)函數(shù)取得最大,即,即,而.故答案為.【點(diǎn)睛】本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用、簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】

(1)構(gòu)造直線所在平面,由面面平行推證線面平行;(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過(guò)點(diǎn)交于點(diǎn),連接,如下圖所示:因?yàn)槠矫嫫矫?,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因?yàn)闉橹悬c(diǎn),,故可得//,為中點(diǎn);又因?yàn)樗倪呅螢榈妊菪?,是的中點(diǎn),故可得//;又,且平面,平面,故面面,又因?yàn)槠矫?,故?即證.(2)連接,,作交于點(diǎn),由(1)可知平面,又因?yàn)?/,故可得平面,則;又因?yàn)?/,,故可得即,,兩兩垂直,則分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,,,設(shè)面的法向量為,則,,則,可取,設(shè)平面的法向量為,則,,則,可取,可知平面與平面所成的銳二面角的余弦值為.【點(diǎn)睛】本題考查由面面平行推證線面平行,涉及用向量法求二面角的大小,屬綜合基礎(chǔ)題.18、(1)(2)見(jiàn)解析(3)見(jiàn)解析【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個(gè)極值點(diǎn),只需在內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗(yàn)證,可得當(dāng)時(shí),對(duì)任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個(gè)極值點(diǎn),,則須有有兩個(gè)不相等的正數(shù)根,所以或解得或無(wú)解,所以的取值范圍,可得,由題意知,令,則.而當(dāng)時(shí),,即,所以在上單調(diào)遞減,所以即時(shí),.(Ⅲ)因?yàn)?,.令得,.由(Ⅱ)知時(shí),的對(duì)稱(chēng)軸,,,所以.又,可得,此時(shí),在上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減,所以最多只有三個(gè)不同的零點(diǎn).又因?yàn)?,所以在上遞增,即時(shí),恒成立.根據(jù)(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個(gè)不同的零點(diǎn):,1,.綜上所述,恰有三個(gè)不同的零點(diǎn).【點(diǎn)睛】利用賦值法求出關(guān)系,利用函數(shù)導(dǎo)數(shù),研究函數(shù)的單調(diào)性,要求函數(shù)有兩個(gè)極值點(diǎn),只需在內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù)是近年高考?jí)狠S題的熱點(diǎn).19、(1)證明見(jiàn)解析;(2).【解析】

(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號(hào)判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對(duì)函數(shù)求導(dǎo),變形后討論當(dāng)時(shí)的函數(shù)單調(diào)情況:當(dāng)時(shí),可知滿足題意;將不等式化簡(jiǎn)后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點(diǎn)與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗(yàn)的符號(hào),即可確定整數(shù)的最大值;當(dāng)時(shí)不滿足題意,因?yàn)榍笳麛?shù)的最大值,所以時(shí)無(wú)需再討論.【詳解】(1)證明:當(dāng)時(shí)代入可得,令,,則,令解得,當(dāng)時(shí),所以在單調(diào)遞增,當(dāng)時(shí),所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時(shí),當(dāng)時(shí),,則在時(shí)單調(diào)遞減,所以,即當(dāng)時(shí)成立;所以此時(shí)需滿足的整數(shù)解即可,將不等式化簡(jiǎn)可得,令則令解得,當(dāng)時(shí),即在內(nèi)單調(diào)遞減,當(dāng)時(shí),即在內(nèi)單調(diào)遞增,所以當(dāng)時(shí)取得最小值,則,,,所以此時(shí)滿足的整數(shù)的最大值為;當(dāng)時(shí),在時(shí),此時(shí),與題意矛盾,所以不成立.因?yàn)榍笳麛?shù)的最大值,所以時(shí)無(wú)需再討論,綜上所述,當(dāng)時(shí),整數(shù)的最大值為.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號(hào),綜合性強(qiáng),屬于難題.20、(1)極大值是,無(wú)極小值;(2)【解析】

(1)當(dāng)時(shí),可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點(diǎn),從而可得原函數(shù)的極值點(diǎn)及極大值;(2)表示出,并求得,由題意,得方程有兩個(gè)不同的實(shí)根,,從而可得△及,由,得.則可化為對(duì)任意的恒成立,按照、、三種情況分類(lèi)討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當(dāng)時(shí),.令,則,顯然在上單調(diào)遞減,又因?yàn)?,故時(shí),總有,所以在上單調(diào)遞減.由于,所以當(dāng)時(shí),;當(dāng)時(shí),.當(dāng)變化時(shí),的變化情況如下表:+-增極大減所以在上的極大值是,無(wú)極小值.(2)由于,則.由題意,方程有兩個(gè)不等實(shí)根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當(dāng)時(shí),不等式恒成立,即.當(dāng)時(shí),恒成立,即,令,易證是上的減函數(shù).因此,當(dāng)時(shí),,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論