版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆貴州省遵義市求是高級中學高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量,且,,則為()A.0.1358 B.0.2716C.0.1359 D.0.27182.函數(shù)的最小值為()A. B.1C.2 D.e3.若等比數(shù)列滿足,,則數(shù)列的公比為()A. B.C. D.4.的展開式中,常數(shù)項為()A. B.C. D.5.“”是“直線與直線垂直”的A.充分必要條件 B.充分非必要條件C.必要不充分條件 D.既不充分也不必要條件6.已知函數(shù)f(x)=x(lnx-ax)有兩個極值點,則實數(shù)a的取值范圍是()A.(-∞,0) B.C.(0,1) D.(0,+∞)7.下列三個命題:①“若,則a,b全為0”的逆否命題是“若a,b全不為0,則”;②若事件A與事件B互斥,則;③設命題p:若m是質數(shù),則m一定是奇數(shù),那么是真命題;其中真命題的個數(shù)為()A.3 B.2C.1 D.08.直線的傾斜角的大小為A. B.C. D.9.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.10.在等差數(shù)列中,,則()A.9 B.6C.3 D.111.若函數(shù)在區(qū)間上有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.12.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線圍成的圖形的面積是__________14.已知莖葉圖記錄了甲、乙兩組各名學生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________.甲組乙組15.已知5件產(chǎn)品中有2件次品、3件合格品,從這5件產(chǎn)品中任取2件,求2件都是合格品的概率_______.16.如圖,將一個正方體沿相鄰三個面的對角線截出一個棱錐,若該棱錐的體積為,則該正方體的體對角線長為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列滿足,.(Ⅰ)求的通項公式;(Ⅱ)若,設(),記數(shù)列的前n項和為,求.18.(12分)已知圓M經(jīng)過原點和點,且它的圓心M在直線上.(1)求圓M的方程;(2)若點D為圓M上的動點,定點,求線段CD的中點P的軌跡方程.19.(12分)某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù)20.(12分)已知橢圓的左、右焦點分別為,過右焦點作直線交于,其中的周長為的離心率為.(1)求的方程;(2)已知的重心為,設和的面積比為,求實數(shù)的取值范圍.21.(12分)已知橢圓的離心率為,且點在橢圓上(1)求橢圓的標準方程;(2)若過定點的直線交橢圓于不同的兩點、(點在點、之間),且滿足,求的取值范圍.22.(10分)某公園有一形狀可抽象為圓柱的標志性景觀建筑物,該建筑物底面直徑為8米,在其南面有一條東西走向的觀景直道,建筑物的東西兩側有與觀景直道平行的兩段輔道,觀景直道與輔道距離10米.在建筑物底面中心O的東北方向米的點A處,有一全景攝像頭,其安裝高度低于建筑物的高度(1)在西輔道上距離建筑物1米處的游客,是否在該攝像頭的監(jiān)控范圍內?(2)求觀景直道不在該攝像頭的監(jiān)控范圍內的長度
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)正態(tài)分布的對稱性可求概率.【詳解】由題設可得,,故選:C.2、B【解析】先化簡為,然后通過換元,再研究外層函數(shù)單調性,進而求得的最小值【詳解】化簡可得:令,故的最小值即為的最小值,是關于的單調遞增函數(shù),易知對求導可得:當時,單調遞減;當時,單調遞增則有:故選:B3、D【解析】設等比數(shù)列的公比為,然后由已知條件列方程組求解即可【詳解】設等比數(shù)列的公比為,因為,,所以,所以,解得,故選:D4、A【解析】寫出展開式通項,令的指數(shù)為零,求出參數(shù)的值,代入通項計算即可得解.【詳解】的展開式通項為,令,可得,因此,展開式中常數(shù)項為.故選:A.5、B【解析】先由兩直線垂直求出的值,再由充分條件與必要條件的概念,即可得出結果.【詳解】因為直線與直線垂直,則,即,解得或;因此由“”能推出“直線與直線垂直”,反之不能推出,所以“”是“直線與直線垂直”的充分非必要條件.故選B【點睛】本題主要考查命題充分不必要條件的判定,熟記充分條件與必要條件的概念,以及兩直線垂直的判定條件即可,屬于常考題型.6、B【解析】函數(shù)f(x)=x(lnx﹣ax),則f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函數(shù)f(x)=x(lnx﹣ax)有兩個極值點,等價于f′(x)=lnx﹣2ax+1有兩個零點,等價于函數(shù)y=lnx與y=2ax﹣1的圖象有兩個交點,在同一個坐標系中作出它們的圖象(如圖)當a=時,直線y=2ax﹣1與y=lnx的圖象相切,由圖可知,當0<a<時,y=lnx與y=2ax﹣1的圖象有兩個交點則實數(shù)a的取值范圍是(0,)故選B7、B【解析】寫出逆否命題可判斷①;根據(jù)互斥事件的概率定義可判斷②;根據(jù)寫出再判斷真假可判斷③.【詳解】對于①,“,則a,b全為0”的逆否命題是“若a,b不全為0,則”,故①錯誤;對于②,滿足互斥事件的概率求和的方法,所以②為真命題;③命題p:若m是質數(shù),則m一定是奇數(shù).2是質數(shù),但2是偶數(shù),命題p是假命題,那么真命題故選:B.8、A【解析】考點:直線的傾斜角專題:計算題分析:因為直線的斜率是傾斜角的正切值,所以欲求直線的傾斜角,只需求出直線的斜率即可,把直線化為斜截式,可得斜率,問題得解解答:解:∵x-y+1=0可化為y=x+,∴斜率k=設傾斜角為θ,則tanθ=k=,θ∈[0,π)∴θ=故選A點評:本題主要考查了直線的傾斜角與斜率之間的關系,屬于直線方程的基礎題型,需要學生對基礎知識熟練掌握9、D【解析】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,利用空間向量夾角公式進行求解即可.【詳解】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.10、A【解析】直接由等差中項得到結果.詳解】由得.故選:A.11、D【解析】由題意,即在區(qū)間上有兩個異號零點,令,利用函數(shù)的單調性與導數(shù)的關系判斷單調性,數(shù)形結合即可求解【詳解】解:由題意,即在區(qū)間上有兩個異號零點,構造函數(shù),則,令,得,令,得,所以函數(shù)在上單調遞增,在上單調遞減,又時,,時,,且,所以,即,所以的范圍故選:D12、C【解析】利用數(shù)量積運算性質、等比數(shù)列的性質及其對數(shù)運算性質即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質、等比數(shù)列的性質及其對數(shù)運算性質,考查推理能力與計算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當,時,已知方程是,即.它對應的曲線是第一象限內半圓?。òǘ它c),它的圓心為,半徑為.同理,當,;,;,時對應的曲線都是半圓弧(如圖).它所圍成的面積是.故答案為14、【解析】根據(jù)中位數(shù)、平均數(shù)的定義,結合莖葉圖進行計算求解即可.【詳解】根據(jù)莖葉圖可知:甲組名學生在一次英語聽力測試中的成績分別;乙組名學生在一次英語聽力測試中的成績分別,因為甲組數(shù)據(jù)的中位數(shù)為,所以有,又因為乙組數(shù)據(jù)的平均數(shù)為,所以有,所以,故答案為:15、##【解析】列舉總的基本事件及滿足題目要求的基本事件,然后用古典概型的概率公式求解即可.【詳解】設5件產(chǎn)品中的次品為,合格品為,則從這5件產(chǎn)品中任取2件,有共10個基本事件,其中2件都是合格品的有共3個基本事件,故2件都是合格品的概率為故答案為:.16、.【解析】先根據(jù)棱錐的體積求出正方體的棱長,進而求出正方體的體對角線長.【詳解】如圖,連接,設正方體棱長為,則.所以,體對角線.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)設等比數(shù)列的公比為q,由已知建立方程組,求得數(shù)列的首項和公比,從而求得數(shù)列的通項;(Ⅱ)由(Ⅰ)及已知可得和(),運用錯位相減法可求得數(shù)列的和【詳解】解:(Ⅰ)設等比數(shù)列的公比為q,由,可得,記為①又因為,可得,即記為②,由①②可得或,故的通項公式為或(Ⅱ)由(Ⅰ)及可知,所以(),所以③④③-④得,所以【點睛】方法點睛:數(shù)列求和的常用方法:(1)公式法:即直接用等差、等比數(shù)列的求和公式求和.(2)錯位相減法:若是等差數(shù)列,是等比數(shù)列,求.(3)裂項相消法:把數(shù)列的通項拆成兩項之差,相消剩下首尾的若干項.常見的裂頂有,,等.(4)分組求和法:把數(shù)列的每一項分成若干項,使其轉化為等差或等比數(shù)列,再求和.(5)倒序相加法.18、(1).(2).【解析】(1)設圓M的方程為,由已知條件建立方程組,求解即可;(2)設,,依題意得.代入圓M的方程可得點P的軌跡方程.【小問1詳解】解:設圓M的方程為,則圓心依題意得,解得.所以圓M的方程為.【小問2詳解】解:設,,依題意得,得.點為圓M上的動點,得,化簡得P的軌跡方程為.19、(1);(2)眾數(shù)是,中位數(shù)為【解析】(1)利用頻率之和為一可求得的值;(2)眾數(shù)為最高小矩形底邊中點的橫坐標;中位數(shù)左邊和右邊的直方圖的面積相等可求得中位數(shù)試題解析:(1)由直方圖的性質可得,∴(2)月平均用電量的眾數(shù)是,∵,月平均用電量的中位數(shù)在內,設中位數(shù)為,由,可得,∴月平均用電量的中位數(shù)為224考點:頻率分布直方圖;中位數(shù);眾數(shù)20、(1)(2)【解析】(1)已知焦點弦三角形的周長,以及離心率求橢圓方程,待定系數(shù)直接求解即可.(2)第一步設點設直線,第二步聯(lián)立方程韋達定理,第三步條件轉化,利用三角形等面積法,列方程,第四步利用韋達定理進行轉化,計算即可.【小問1詳解】因為的周長為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問2詳解】方法一:,,的面積為,的面積為,則,得,①設,與橢圓C方程聯(lián)立,消去得,由韋達定理得,.令,②則,可得當時,當時,所以,又解得③由①②③得,解得.所以實數(shù)的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設,與橢圓C方程聯(lián)立,消去得,由韋達定理得,.所以因為,所以解得②由①②解得.所以實數(shù)的取值范圍是.21、(1)(2)【解析】(1)代入點坐標,結合離心率,以及即得解;(2)設直線方程,與橢圓聯(lián)立,轉化為,結合韋達定理和判別式,分析即得解【小問1詳解】由題意可知:,解得:橢圓的標準方程為:【小問2詳解】①當直線斜率不存在,方程為,則,.②當直線斜率存在時,設直線方程為,聯(lián)立得:.由得:.設,,則,,又,,,則,,所以,所以,解得:,又,綜上所述:的取值范圍為.22、(1)不在(2)17.5米【解析】(1)以O為原點,正東方向為x軸正方向建立如圖所示的直角坐標系,求出直線AB方程,判斷直線AB與圓O的位置關系即可;(2)攝像頭監(jiān)控不會被建筑物遮擋,只需求出過點A的直線l與圓O相切時的直線方程即可.【小問1詳解】以O為原點,正東方向為x軸正方向建立如圖所示的直角坐標系則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省漢中市寧強縣2023-2024學年七年級上學期期末學業(yè)水平檢測數(shù)學試卷(含解析)
- 01月08日佛山市東建文華尚領尚域66行政財富公寓項目定位分析
- 《論壇版塊策劃書》課件
- 16.1《赤壁賦》課件 2024-2025學年統(tǒng)編版高中語文必修上冊-4
- 2025屆云南省文山馬關實驗高級中學高三第六次模擬考試語文試卷含解析
- 采購員培訓課件教程課程-智庫文檔
- 江蘇省清江市清江中學2025屆高三下學期第六次檢測數(shù)學試卷含解析
- 2025屆福建省廈門市廈門第一中學高三最后一卷語文試卷含解析
- 2025屆江蘇省徐州市第五中學高三第四次模擬考試英語試卷含解析
- 【大學課件】網(wǎng)絡通信技術基礎培訓教程
- 牙合畸形的早期矯治通用課件
- 四川省資陽市安岳縣2023-2024年九年級上期期末化學試題
- 2023-2024學年廣東省深圳市福田區(qū)八年級(上)學期期末聯(lián)考數(shù)學試題(含解析)
- 《甲狀腺危象》課件
- 初中道德與法治差異化作業(yè)實踐探究
- 部編版小學道德與法治五年級上冊單元復習課件(全冊)
- 北京市2022-2023學年七年級上學期語文期末試卷(含答案)
- 電纜放線施工方案
- GB/T 43439-2023信息技術服務數(shù)字化轉型成熟度模型與評估
- 圖書破損或丟失登記表
- 2023-2024年新人教版pep六年級英語上冊試卷全套含答案
評論
0/150
提交評論