版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共7頁江蘇省鹽城市大豐區(qū)三龍初級中學(xué)2024-2025學(xué)年數(shù)學(xué)九年級第一學(xué)期開學(xué)復(fù)習(xí)檢測模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)若關(guān)于的方程產(chǎn)生增根,則的值是()A. B. C.或 D.2、(4分)為加快5G網(wǎng)絡(luò)建設(shè),某移動通信公司在山頂上建了一座5G信號通信塔AB,山高BE=100米(A,B,E在同一直線上),點C與點D分別在E的兩側(cè)(C,E,D在同一直線上),BE⊥CD,CD之間的距離1000米,點D處測得通信塔頂A的仰角是30°,點C處測得通信塔頂A的仰角是45°(如圖),則通信塔AB的高度約為()米.(參考數(shù)據(jù):,)A.350 B.250 C.200 D.1503、(4分)如圖,∠BAC=90°,四邊形ADEB、BFGC、CHIA均為正方形,若
S四邊形ADEB=6,S四邊形BFGC=18,四邊形CHIA的周長為()A.4 B.8 C.12 D.84、(4分)如圖,在平行四邊形ABCD中,∠BAC=78°,∠ACB=38°,則∠D的度數(shù)是(
)A.52° B.64° C.78° D.38°5、(4分)下列根式中,不.是.最簡二次根式的是()A.2 B.3 C.7 D.16、(4分)若分式的值為零,則x的值是()A.±2 B.2 C.﹣2 D.07、(4分)如圖,在矩形ABCD中,邊AB的長為3,點E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BEDF是菱形,且EF=AE+FC,則邊BC的長為()A.2 B.3 C.6 D.8、(4分)若關(guān)于的不等式組至少有四個整數(shù)解,且關(guān)于的分式方程的解為整數(shù),則符合條件的所有整數(shù)有()A.3個 B.4個 C.5個 D.2個二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)函數(shù)中,自變量x的取值范圍是▲.10、(4分)在中,,,點是中點,點在上,,將沿著翻折,點的對應(yīng)點是點,直線與交于點,那么的面積__________.11、(4分)根據(jù)數(shù)量關(guān)系:的5倍加上1是正數(shù),可列出不等式:__________.12、(4分)如圖,如果要使ABCD成為一個菱形,需要添加一個條件,那么你添加的條件是________.13、(4分)小麗計算數(shù)據(jù)方差時,使用公式S2=,則公式中=__.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.15、(8分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°.動點P、Q同時從點A出發(fā),其中P以4cm/s的速度,沿A→B→C的路線向點C運動;Q以2cm/s的速度,沿A→C的路線向點C運動.當(dāng)P、Q到達終點C時,整個運動隨之結(jié)束,設(shè)運動時間為t秒.(1)在點P、Q運動過程中,請判斷PQ與對角線AC的位置關(guān)系,并說明理由;(2)若點Q關(guān)于菱形ABCD的對角線交點O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N.①當(dāng)t為何值時,點P、M、N在一直線上?②當(dāng)點P、M、N不在一直線上時,是否存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.16、(8分)如圖,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分別為邊AC、AB的中點.(1)求∠A的度數(shù);(2)求EF和AE的長.17、(10分)在“6.26”國際禁毒日到來之際,為了普及禁毒知識,提高市民禁毒意識,某區(qū)發(fā)放了一批“關(guān)愛生命,拒絕毒品”的宣傳資料.據(jù)統(tǒng)計,甲小區(qū)共收到宣傳資料350份,乙小區(qū)共收到宣傳資料100份,甲小區(qū)住戶比乙小區(qū)住戶的3倍多25戶,若兩小區(qū)每戶平均收到資料的數(shù)量相同.求這兩小區(qū)各有多少戶住戶?18、(10分)如圖1,已知正方形ABCD的邊長為6,E是CD邊上一點(不與點C重合),以CE為邊在正方形ABCD的右側(cè)作正方形CEFG,連接BF、BD、FD.(1)當(dāng)點E與點D重合時,△BDF的面積為;當(dāng)點E為CD的中點時,△BDF的面積為.(2)當(dāng)E是CD邊上任意一點(不與點C重合)時,猜想S△BDF與S正方形ABCD之間的關(guān)系,并證明你的猜想;
(3)如圖2,設(shè)BF與CD相交于點H,若△DFH的面積為,求正方形CEFG的邊長.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)因式分解:____________.20、(4分)如圖,一架15m長的梯子AB斜靠在一豎直的墻OA上,這時梯子的頂端A離地面距離OA為12m,如果梯子頂端A沿墻下滑3m至C點,那么梯子底端B向外移至D點,則BD的長為___m.21、(4分)如圖,正方形的邊長為,點為邊上一點,,點為的中點,過點作直線分別與,相交于點,.若,則長為______.22、(4分)某班有48名同學(xué),在一次英語單詞競賽成績統(tǒng)計中,成績在81~90這一分數(shù)段的人數(shù)所占的頻率是0.25,那么成績在這個分數(shù)段的同學(xué)有_________名.23、(4分)如圖,將Rt△ABC繞直角頂點A按順時針方向旋轉(zhuǎn)180°得△AB1C1,寫出旋轉(zhuǎn)后BC的對應(yīng)線段_____.二、解答題(本大題共3個小題,共30分)24、(8分)如圖,,是上的一點,且,.求證:≌25、(10分)如圖,為長方形的對角線,將邊沿折疊,使點落在上的點處.將邊沿折疊,使點落在上的點處。求證:四邊形是平行四邊形;若,求四邊形的面積。26、(12分)(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,∠EAF=45°,延長CD到點G,使DG=BE,連結(jié)EF,AG.求證:①∠BEA=∠G,②EF=FG.(2)如圖2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】
根據(jù)方程有增根得到x=3,將x=3代入化簡后的整式方程中即可求出答案.【詳解】將方程去分母得x-1=m,∵方程產(chǎn)生增根,∴x=3,將x=3代入x-1=m,得m=2,故選:B.此題考查分式方程的解的情況,分式方程的增根是使分母為0的未知數(shù)的值,正確理解增根是解題的關(guān)鍵.2、B【解析】
設(shè)AB=x米,則AE=(100+x)米,然后利用特殊角的三角函數(shù)值表示出DE,EC,最后利用CD=DE+EC=1000即可求出x的值.【詳解】設(shè)AB=x米,則AE=(100+x)米,在Rt△AED中,∵,則DE==(100+x),在Rt△AEC中,∠C=45°,∴CE=AE=100+x,由題意得,(100+x)+(100+x)=1000,解得x=250,即AB=250米,故選:B.本題主要考查解直角三角形,掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.3、B【解析】
外圍正方形的面積就是斜邊和一直角邊的平方,實際上是求另一直角邊的平方,用勾股定理即可解答.【詳解】解:根據(jù)勾股定理我們可以得出:
AB2+AC2=BC2
S正方形ADEB=AB2=6,S正方形BFGC=BC2=18,S正方形CHIA=AC2=18-6=12,∴AC=,∴四邊形CHIA的周長為==8
故選:B.本題主要考查了正方形的面積公式和勾股定理的應(yīng)用.只要搞清楚直角三角形的斜邊和直角邊本題就容易多了.4、B【解析】
根據(jù)三角形內(nèi)角和定理求得∠B的度數(shù),再根據(jù)平行四邊形的性質(zhì)即可求得答案.【詳解】在△ABC中,∠BAC=78°,∠ACB=38°,∴∠B=(180-78-38)o=64°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=64°.故選:B.考查了平行四邊形的性質(zhì),利用平行四邊形對角相等得出答案是解題的關(guān)鍵.5、D【解析】
按照最簡二次根式的定義判斷即可.【詳解】解:因為12=1×22×2=22,所以12不是最簡二次根式,而2本題考查了最簡二次根式的定義,判定一個二次根式是不是最簡二次根式的方法,看是否同時滿足最簡二次根式中的兩個條件(被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式),同時滿足的就是最簡二次根式,否則就不是.6、C【解析】
分式的值為1,則分母不為1,分子為1.【詳解】∵|x|﹣2=1,∴x=±2,當(dāng)x=2時,x﹣2=1,分式無意義.當(dāng)x=﹣2時,x﹣2≠1,∴當(dāng)x=﹣2時分式的值是1.故選C.分式是1的條件中特別需要注意的是分母不能是1,這是經(jīng)??疾榈闹R點.7、B【解析】
根據(jù)矩形的性質(zhì)和菱形的性質(zhì)得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因為四邊形BEDF是菱形,所以BE,AE可求出進而可求出BC的長.【詳解】∵四邊形ABCD是矩形,∴∠A=90°,即BA⊥BF,∵四邊形BEDF是菱形,∴EF⊥BD,∠EBO=∠DBF,∵EF=AE+FC,AE=CF,EO=FO∴AE=EO=CF=FO,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE=,∴BF=BE=2,∴CF=AE=,∴BC=BF+CF=3,故選B.8、C【解析】
由不等式組至少有4個整數(shù)解,可得的取值范圍,由方程的解是整數(shù),可得的值,綜合可得答案.【詳解】解:因為由①得:,所以,由②得:<,即<,解得:>,又因為不等式組至少有4個整數(shù)解,所以,所以,又因為:,去分母得:,解得:,而方程的解為整數(shù),所以,所以的值可以為:,綜上的值可以為:,故選C.本題考查不等式組的整數(shù)解的問題,方程的整數(shù)解問題,都是初中數(shù)學(xué)學(xué)習(xí)的難點,關(guān)鍵是理解題意,其中不等式組的整數(shù)解利用數(shù)軸得到范圍是解題關(guān)鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、.【解析】試題分析:由已知:x-2≠0,解得x≠2;考點:自變量的取值范圍.10、或【解析】
通過計算E到AC的距離即EH的長度為3,所以根據(jù)DE的長度有兩種情況:①當(dāng)點D在H點上方時,②當(dāng)點D在H點下方時,兩種情況都是過點E作交AC于點E,過點G作交AB于點Q,利用含30°的直角三角形的性質(zhì)和勾股定理求出AH,DH的長度,進而可求AD的長度,然后利用角度之間的關(guān)系證明,再利用等腰三角形的性質(zhì)求出GQ的長度,最后利用即可求解.【詳解】①當(dāng)點D在H點上方時,過點E作交AC于點E,過點G作交AB于點Q,,點是中點,.∵,.,,.,,,,,.由折疊的性質(zhì)可知,,,,.又,.,.,即,.,;②當(dāng)點D在H點下方時,過點E作交AC于點E,過點G作交AB于點Q,,點是中點,.∵,.,,.,,,,,.由折疊的性質(zhì)可知,,,,.又,.,.,即,.,,綜上所述,的面積為或.故答案為:或.本題主要考查折疊的性質(zhì),等腰三角形的判定及性質(zhì),等腰直角三角形的性質(zhì),勾股定理,含30°的直角三角形的性質(zhì),能夠作出圖形并分情況討論是解題的關(guān)鍵.11、【解析】
問題中的“正數(shù)”是關(guān)鍵詞語,將它轉(zhuǎn)化為數(shù)學(xué)符號即可.【詳解】題中“x的5倍加上1”表示為:“正數(shù)”就是的5倍加上1是正數(shù),可列出不等式:故答案為:.用不等式表示不等關(guān)系是研究不等式的基礎(chǔ),在表示時,一定要抓住關(guān)鍵詞語,弄清不等關(guān)系,把文字語言和不等關(guān)系轉(zhuǎn)化為用數(shù)學(xué)符號表示的不等式.12、AB=BC(答案不唯一)【解析】試題解析:因為一組鄰邊相等的平行四邊形是菱形,對角線互相垂直平分的四邊形是菱形,那么可添加的條件是:AB=BC或AC⊥BD.13、1【解析】分析:根據(jù)題目中的式子,可以得到的值,從而可以解答本題.詳解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.故答案為1.點睛:本題考查了方差、平均數(shù),解答本題的關(guān)鍵是明確題意,求出相應(yīng)的平均數(shù).三、解答題(本大題共5個小題,共48分)14、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點,可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或?qū)堑奈恢蒙?,通過證明四邊形是平行四邊形達到上述目的.15、(1)在點P、Q運動過程中,始終有PQ⊥AC;理由見解析;(1)①當(dāng)t=時,點P、M、N在一直線上;②存在這樣的t,故當(dāng)t=1或時,存在以PN為一直角邊的直角三角形.【解析】
(1)此問需分兩種情況,當(dāng)0<t≤5及5<t≤10兩部分分別討論得PQ⊥AC.(1)①由于點P、M、N在一直線上,則AQ+QM=AM,代入求得t的值.②假設(shè)存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形,但是需分點N在AD上時和點N在CD上時兩種情況分別討論.【詳解】解:(1)若0<t≤5,則AP=4t,AQ=1t.則==,又∵AO=10,AB=10,∴==.∴=.又∠CAB=30°,∴△APQ∽△ABO.∴∠AQP=90°,即PQ⊥AC.當(dāng)5<t≤10時,同理,可由△PCQ∽△BCO得∠PQC=90°,即PQ⊥AC.∴在點P、Q運動過程中,始終有PQ⊥AC.(1)①如圖,在Rt△APM中,∵∠PAM=30°,AP=4t,∴AM=.在△APQ中,∠AQP=90°,∴AQ=AP?cos30°=1t,∴QM=AC-1AQ=10-4t.由AQ+QM=AM得:1t+10-4t=,解得t=.∴當(dāng)t=時,點P、M、N在一直線上.②存在這樣的t,使△PMN是以PN為一直角邊的直角三角形.設(shè)l交AC于H.如圖1,當(dāng)點N在AD上時,若PN⊥MN,則∠NMH=30°.∴MH=1NH.得10-4t-t=1×,解得t=1.如圖1,當(dāng)點N在CD上時,若PM⊥PN,則∠HMP=30°.∴MH=1PH,同理可得t=.故當(dāng)t=1或時,存在以PN為一直角邊的直角三角形.16、(1)30°(2)EF=2cm,AE=2cm【解析】
(1)由“直角三角形的兩個銳角互余”的性質(zhì)來求∠A的度數(shù);(2)由“30度角所對的直角邊等于斜邊的一半”求得BC=AB=4cm,再利用中位線的性質(zhì)即可解答【詳解】(1)∵在Rt△ABC中,∠C=90°,∠B=60°∴∠A=90°-∠B=30°即∠A的度數(shù)是30°.(2)∵在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm∴BC=AB=4cm∴AC==cm∴AE=AC=2cm∵E、F分別為邊AC、AB的中點∴EF是△ABC的中位線∴EF=BC=2cm.此題考查三角形中位線定理,含30度角的直角三角形,解題關(guān)鍵在于利用勾股定理進行計算17、甲小區(qū)住戶有175戶,乙小區(qū)住戶有50戶【解析】
設(shè)乙小區(qū)住戶為x戶,則甲小區(qū)住戶有:(3x+25)戶,根據(jù)每戶平均收到資料的數(shù)量相同,列出方程,解答即可.【詳解】解:設(shè)乙小區(qū)住戶為x戶,根據(jù)題意得:,解得:,經(jīng)檢驗是原方程的解,∴甲小區(qū)住戶,所以,甲小區(qū)住戶有175戶,乙小區(qū)住戶有50戶.本題考查了分式方程的實際應(yīng)用,解題的關(guān)鍵是找到題目中的關(guān)系,列出分式方程.18、(1)1,1;(2)S△BDF=S正方形ABCD,證明見解析;(3)2【解析】
(1)根據(jù)三角形的面積公式求解;(2)連接CF,通過證明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;(3)根據(jù)S△BDF=S△BDC可得S△BCH=S△DFH=,由三角形面積公式可求CH,DH的長,再由三角形面積公式求出EF的長即可.【詳解】(1)∵當(dāng)點E與點D重合時,
∴CE=CD=6,
∵四邊形ABCD,四邊形CEFG是正方形,
∴DF=CE=AD=AB=6,
∴S△BDF=×DF×AB=1,當(dāng)點E為CD的中點時,如圖,連接CF,∵四邊形ABCD和四邊形CEFG均為正方形;
∴∠CBD=∠GCF=25°,
∴BD∥CF,
∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,故答案為:1,1.(2)S△BDF=S正方形ABCD,證明:連接CF.∵四邊形ABCD和四邊形CEFG均為正方形;∴∠CBD=∠GCF=25°,∴BD∥CF,∴S△BDF=S△BDC=S正方形ABCD;(3)由(2)知S△BDF=S△BDC,∴S△BCH=S△DFH=,∴,∴,,∴,∴EF=2,∴正方形CEFG的邊長為2.本題是四邊形綜合題,考查了正方形的性質(zhì),三角形的面積公式,平行線的性質(zhì),靈活運用這些性質(zhì)進行推理是本題的關(guān)鍵.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】
先提公因式m,再利用平方差公式即可分解因式.【詳解】解:,故答案為:.本題考查了利用提公因式法和公式法因式分解,解題的關(guān)鍵是找出公因式,熟悉平方差公式.20、1【解析】
先根據(jù)勾股定理求出OB的長,再在Rt△COD中求出OD的長,進而可得出結(jié)論.【詳解】解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB==9m.同理,在Rt△COD中,DO==12m,∴BD=OD﹣OB=12﹣9=1(m).故答案是:1.本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.21、1或2【解析】
根據(jù)題意畫出圖形,過P作PN⊥BC,交BC于點N,由ABCD為正方形,得到AD=DC=PN,在直角三角形ADE中,利用銳角三角函數(shù)定義求出DE的長,進而利用勾股定理求出AE的長,根據(jù)M為AE中點求出AM的長,利用HL得到三角形ADE與三角形PQN全等,利用全等三角形對應(yīng)邊,對應(yīng)角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN與DC平行,得到∠PFA=∠DEA=60°,進而得到PM垂直于AE,在直角三角形APM中,根據(jù)AM的長,利用銳角三角函數(shù)定義求出AP的長,再利用對稱性確定出AP′的長即可.【詳解】根據(jù)題意畫出圖形,過點作,交于點,交于點,四邊形為正方形,.在中,,cm,cm.根據(jù)勾股定理得cm.為的中點,cm,在和中,,,.,,,即.在中,,cm.由對稱性得到cm,綜上,等于1cm或2cm.故答案為:1或2.此題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.22、1【解析】
由題意直接根據(jù)頻數(shù)=頻率×總數(shù),進而可得答案.【詳解】解:由題意可得成績在81~90這個分數(shù)段的同學(xué)有48×0.25=1(名).故答案為:1.本題主要考查頻數(shù)和頻率,解題的關(guān)鍵是掌握頻率等于頻數(shù)除以總數(shù)進行分析計算.23、B1C1.【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)解答即可.【詳解】∵將Rt△ABC繞直角頂點A按順時針方向旋轉(zhuǎn)180°得△AB1C1,∴△ABC≌△AB1C1,∴BC=B1C1,∴旋轉(zhuǎn)后BC的對應(yīng)線段是B1C1,故答案為:B1C1.本題考查了旋轉(zhuǎn)的性質(zhì),熟記旋轉(zhuǎn)的各種性質(zhì)以及旋轉(zhuǎn)的三要素是解題的關(guān)鍵.二、解答題(本大題共3個小題,共30分)24、證明見解析.【解析】
此題比較簡單,根據(jù)已知條件,利用直角三角形的HL可以證明題目結(jié)論.【詳解】證明:∵∠1=∠2∴DE=CE∵∠A=∠B=90°∴AE=BC∴Rt△ADE≌Rt△BEC(HL)此題考查直角三角形全等的判定,解題關(guān)鍵在于掌握判定定理25、(1)證明過程見解析;(2)四邊形的面積為30.【解析】
(1)首先證明△ABE≌△CDF,則DF=BE,然后可得到AF=EC,依據(jù)一組對邊平行且相等的四邊形是平行四邊形可證明AECF是平行四邊形;(2)由可得BC=8,由折疊性質(zhì)可設(shè)BE=EM=x,根據(jù),可以求出x的值,進而求出四邊形的面積.【詳解】(1)證明:∵四邊形ABCD為矩形∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北邢臺地區(qū)2023-2024學(xué)年上學(xué)期期末考試九年級理綜試卷-初中化學(xué)
- 領(lǐng)導(dǎo)家電行業(yè)的品牌發(fā)展計劃
- 2025年河南省八省聯(lián)考高考地理模擬試卷
- 2022年安徽省安慶市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年河南省平頂山市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2023年湖南省岳陽市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2022年山西省朔州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 英文商務(wù)邀請函范本
- 福建省寧德市(2024年-2025年小學(xué)六年級語文)部編版階段練習(xí)(上學(xué)期)試卷及答案
- 2024年免疫抗疲勞保健品項目項目投資申請報告代可行性研究報告
- 建筑施工易發(fā)事故防治安全標準JGJT 429-2018
- 《改造我們的學(xué)習(xí)》《人的正確思想從哪里來》聯(lián)讀-統(tǒng)編版高中語文選擇性必修中冊
- 3DSMAX教程(全套詳細教案)
- JJF 1102-2003內(nèi)徑表校準規(guī)范
- GB/T 325.2-2010包裝容器鋼桶第2部分:最小總?cè)萘?08L、210L和216.5L全開口鋼桶
- GB/T 17426-1998鐵道特種車輛和軌行機械動力學(xué)性能評定及試驗方法
- 第十一章 全球化與人類學(xué).課件電子教案
- 鐵路基礎(chǔ)知識課件
- 解讀義務(wù)教育生物課程標準(2022年版)《2022生物新課標》PPT
- 保安上墻制度管理辦法
- 醫(yī)院危險化學(xué)品管理制度
評論
0/150
提交評論