2025屆廣東省茂名地區(qū)高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2025屆廣東省茂名地區(qū)高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2025屆廣東省茂名地區(qū)高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2025屆廣東省茂名地區(qū)高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2025屆廣東省茂名地區(qū)高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆廣東省茂名地區(qū)高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.,,,則的大小關(guān)系為()A. B.C. D.2.已知,且,則的最小值為A. B.C. D.3.已知函數(shù),若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A. B.C. D.4.已知點在第三象限,則角的終邊位置在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知冪函數(shù)的圖象過點,若,則實數(shù)的值為()A. B.C. D.46.已知實數(shù)滿足,則函數(shù)的零點在下列哪個區(qū)間內(nèi)A. B.C. D.7.已知函數(shù)則其在區(qū)間上的大致圖象是()A. B.C. D.8.函數(shù)f(x)=在[—π,π]的圖像大致為A. B.C. D.9.設(shè)和兩個集合,定義集合,且,如果,,那么A. B.C. D.10.已知x是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.2021年10月16日0時23分,搭載神舟十三號載人飛船的長征二號F遙十三運載火箭,在酒泉衛(wèi)星發(fā)射中心點火升空.約582秒后,載人飛船與火箭成功分離,進入預(yù)定軌道,發(fā)射取得圓滿成功.此次航天飛行任務(wù)中,火箭起到了非常重要的作用.火箭質(zhì)量是箭體質(zhì)量與燃料質(zhì)量的和,在不考慮空氣阻力的條件下,燃料質(zhì)量不同的火箭的最大速度之差與火箭質(zhì)量的自然對數(shù)之差成正比.已知某火箭的箭體質(zhì)量為mkg,當(dāng)燃料質(zhì)量為mkg時,該火箭的最大速度為2ln2km/s,當(dāng)燃料質(zhì)量為時,該火箭最大速度為2km/s.若該火箭最大速度達到第一宇宙速度7.9km/s,則燃料質(zhì)量是箭體質(zhì)量的_______________倍.(參考數(shù)據(jù):)12.函數(shù)的值域是____.13.函數(shù)定義域為________.(用區(qū)間表示)14.直線與直線的距離是__________15.函數(shù)(其中,,)的圖象如圖所示,則函數(shù)的解析式為__________16.函數(shù)的定義域為_____________________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在①函數(shù)的圖象向右平移個單位長度得到的圖象,圖象關(guān)于原點對稱;②向量,;③函數(shù).這三個條件中任選一個,補充在下面問題中,并解答.已知_________,函數(shù)的圖象相鄰兩條對稱軸之間的距離為.(1)求;(2)求函數(shù)在上的單調(diào)遞減區(qū)間.18.近年來,我國大部分地區(qū)遭遇霧霾天氣,給人們的健康、交通安全等帶來了嚴(yán)重影響.經(jīng)研究發(fā)現(xiàn)工業(yè)廢氣等污染物排放是霧霾形成和持續(xù)的重要因素,污染治理刻不容緩.為此,某工廠新購置并安裝了先進的廢氣處理設(shè)備,使產(chǎn)生的廢氣經(jīng)過過濾后排放,以降低對空氣的污染.已知過濾過程中廢氣的污染物數(shù)量(單位:mg/L)與過濾時間(單位:h)間的關(guān)系為(,均為非零常數(shù),e為自然對數(shù)的底數(shù)),其中為時的污染物數(shù)量.若經(jīng)過5h過濾后還剩余90%的污染物.(1)求常數(shù)的值;(2)試計算污染物減少到40%至少需要多長時間.(精確到1h,參考數(shù)據(jù):,,,,)19.已知函數(shù),.求:(1)求函數(shù)在上的單調(diào)遞減區(qū)間(2)畫出函數(shù)在上的圖象;20.已知函數(shù)f(x)=ax2﹣(4a+1)x+4(a∈R).(1)若關(guān)于x不等式f(x)≥b的解集為{x|1≤x≤2},求實數(shù)a,b的值;(2)解關(guān)于x的不等式f(x)>0.21.已知函數(shù)的圖象恒過定點A,且點A又在函數(shù)的圖象上.(1)求實數(shù)a的值;(2)若函數(shù)有兩個零點,求實數(shù)b的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性得到,根據(jù)指數(shù)函數(shù)的單調(diào)性得到,根據(jù)正弦函數(shù)的單調(diào)性得到.【詳解】易知,,因,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以,所以.故選:D.2、C【解析】運用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]?()﹣1,化簡整理再由基本不等式即可得到最小值【詳解】由x+y=(x+1)+y﹣1=[(x+1)+y]?1﹣1=[(x+1)+y]?2()﹣1=2(21≥3+47當(dāng)且僅當(dāng)x,y=4取得最小值7故選C【點睛】本題考查基本不等式的運用:求最值,注意乘1法和滿足的條件:一正二定三等,考查運算能力,屬于中檔題3、A【解析】將函數(shù)零點個數(shù)問題轉(zhuǎn)化為圖象交點個數(shù)問題,再數(shù)形結(jié)合得解.【詳解】函數(shù)有兩個不同的零點,即方程有兩個不同的根,從而函數(shù)的圖象和函數(shù)的圖象有兩個不同的交點,由可知,當(dāng)時,函數(shù)是周期為1的函數(shù),如圖,在同一直角坐標(biāo)系中作出函數(shù)的圖象和函數(shù)的圖象,數(shù)形結(jié)合可得,當(dāng)即時,兩函數(shù)圖象有兩個不同的交點,故函數(shù)有兩個不同的零點.故選:A.4、B【解析】由所在的象限有,即可判斷所在的象限.【詳解】因為點在第三象限,所以,由,可得角的終邊在第二、四象限,由,可得角的終邊在第二、三象限或軸非正半軸上,所以角終邊位置在第二象限,故選:B.5、D【解析】根據(jù)已知條件,推出,再根據(jù),即可得出答案.【詳解】由題意得:,解得,所以,解得:,故選:D【點睛】本題考查冪函數(shù)的解析式,屬于基礎(chǔ)題.6、B【解析】由3a=5可得a值,分析函數(shù)為增函數(shù),依次分析f(﹣2)、f(﹣1)、f(0)的值,由函數(shù)零點存在性定理得答案【詳解】根據(jù)題意,實數(shù)a滿足3a=5,則a=log35>1,則函數(shù)為增函數(shù),且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函數(shù)零點存在性可知函數(shù)f(x)的零點在區(qū)間(﹣1,0)上,故選B【點睛】本題考查函數(shù)零點存在性定理的應(yīng)用,分析函數(shù)的單調(diào)性是關(guān)鍵7、D【解析】為奇函數(shù),去掉A,B;當(dāng)時,所以選D.點睛:(1)運用函數(shù)性質(zhì)研究函數(shù)圖像時,先要正確理解和把握函數(shù)相關(guān)性質(zhì)本身的含義及其應(yīng)用方向.(2)在運用函數(shù)性質(zhì)特別是奇偶性、周期、對稱性、單調(diào)性、最值、零點時,要注意用好其與條件的相互關(guān)系,結(jié)合特征進行等價轉(zhuǎn)化研究.如奇偶性可實現(xiàn)自變量正負轉(zhuǎn)化,周期可實現(xiàn)自變量大小轉(zhuǎn)化,單調(diào)性可實現(xiàn)去,即將函數(shù)值的大小轉(zhuǎn)化自變量大小關(guān)系8、D【解析】先判斷函數(shù)的奇偶性,得是奇函數(shù),排除A,再注意到選項的區(qū)別,利用特殊值得正確答案【詳解】由,得是奇函數(shù),其圖象關(guān)于原點對稱.又.故選D【點睛】本題考查函數(shù)的性質(zhì)與圖象,滲透了邏輯推理、直觀想象和數(shù)學(xué)運算素養(yǎng).采取性質(zhì)法或賦值法,利用數(shù)形結(jié)合思想解題9、D【解析】根據(jù)的定義,可求出,,然后即可求出【詳解】解:,;∴.故選D.【點睛】考查描述法的定義,指數(shù)函數(shù)的單調(diào)性,正弦函數(shù)的值域,屬于基礎(chǔ)題10、A【解析】解一元二次不等式得或,再根據(jù)集合間的基本關(guān)系,即可得答案;【詳解】或,或,反之不成立,“”是“”的充分不必要條件,故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、51【解析】設(shè)燃料質(zhì)量不同的火箭的最大速度之差與火箭質(zhì)量的自然對數(shù)之差成正比的比例系數(shù)為k,根據(jù)條件列方程求出k值,再設(shè)當(dāng)該火箭最大速度達到第--宇宙速度7.9km/s時,燃料質(zhì)量是箭體質(zhì)量的a倍,根據(jù)題中數(shù)據(jù)再列方程可得a值.【詳解】設(shè)燃料質(zhì)量不同的火箭的最大速度之差與火箭質(zhì)量的自然對數(shù)之差成正比的比例系數(shù)為k,則,解得,設(shè)當(dāng)該火箭最大速度達到第一宇宙速度7.9km/s時,燃料質(zhì)量是箭體質(zhì)量的a倍,則,得,則燃料質(zhì)量是箭體質(zhì)量的51倍故答案為:51.12、##【解析】由余弦函數(shù)的有界性求解即可【詳解】因為,所以,所以,故函數(shù)的值域為,故答案為:13、【解析】由對數(shù)真數(shù)大于0,偶次根式被開方式大于等于0,列出不等式組求解即可得答案.【詳解】解:由,得,所以函數(shù)的定義域為,故答案為:.14、【解析】15、【解析】如圖可知函數(shù)的最大值,當(dāng)時,代入,,當(dāng)時,代入,,解得則函數(shù)的解析式為16、【解析】,區(qū)間為.考點:函數(shù)的定義域三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、選擇見解析;(1);(2)單調(diào)遞減區(qū)間為.【解析】選條件①:由函數(shù)的圖象相鄰兩條對稱軸之間的距離為,得到,解得,再由平移變換和圖象關(guān)于原點對稱,解得,得到,(1)將代入求解;(2)令,結(jié)合求解.選條件②:利用平面向量的數(shù)量積運算得到,再由,求得得到.(1)將代入求解;(2)令,結(jié)合求解.選條件③:利用兩角和的正弦公式,二倍角公式和輔助角法化簡得到,再由,求得得到.(1)將代入求解;(2)令,結(jié)合求解.【詳解】選條件①:由題意可知,最小正周期,∴,∴,∴,又函數(shù)圖象關(guān)于原點對稱,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函數(shù)在上的單調(diào)遞減區(qū)間為.選條件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函數(shù)在上的單調(diào)遞減區(qū)間為.選條件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函數(shù)在上的單調(diào)遞減區(qū)間為.【點睛】方法點睛:1.討論三角函數(shù)性質(zhì),應(yīng)先把函數(shù)式化成y=Asin(ωx+φ)(ω>0)的形式

函數(shù)y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期為,y=tan(ωx+φ)的最小正周期為.

對于函數(shù)的性質(zhì)(定義域、值域、單調(diào)性、對稱性、最值等)可以通過換元的方法令t=ωx+φ,將其轉(zhuǎn)化為研究y=sint的性質(zhì)18、(1)(2)42h【解析】(1)根據(jù)題意,得到,求解,即可得出結(jié)果;(2)根據(jù)(1)的結(jié)果,得到,由題意得到,求解,即可得出結(jié)果.【詳解】(1)由已知得,當(dāng)時,;當(dāng)時,.于是有,解得(或).(2)由(1)知,當(dāng)時,有,解得.故污染物減少到40%至少需要42h.【點睛】本題主要考查函數(shù)模型的應(yīng)用,熟記指數(shù)函數(shù)的性質(zhì)即可,屬于??碱}型.19、(1)(2)圖象見解析【解析】(1)由,得的范圍,即可得函數(shù)在,上的單調(diào)遞減區(qū)間(2)根據(jù)用五點法作函數(shù)的圖象的步驟和方法,作出函數(shù)在,上的圖象【小問1詳解】因為,令,,解得,,令得:函數(shù)在區(qū)間,上的單調(diào)遞減區(qū)間為:,【小問2詳解】,列表如下:01001描點連線畫出函數(shù)在一個周期上,的圖象如圖所示:20、(1)-1,6;(2)答案見詳解【解析】(1)由f(x)≥b的解集為{x|1≤x≤2}結(jié)合韋達定理即可求解參數(shù)a,b的值;(2)原式可因式分解為,再分類討論即可,對再細分為即可求解.【詳解】(1)由f(x)≥b得,因為f(x)≥b的解集為{x|1≤x≤2},故滿足,,解得;(2)原式因式分解可得,當(dāng)時,,解得;當(dāng)時,的解集為;當(dāng)時,,①若,即,則的解集為;②若,即時,解得;③若,即時,解得.【點睛】本題考查由一元二次不等式的解求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論