專題284銳角三角函數(shù)章末拔尖卷(人教版)_第1頁
專題284銳角三角函數(shù)章末拔尖卷(人教版)_第2頁
專題284銳角三角函數(shù)章末拔尖卷(人教版)_第3頁
專題284銳角三角函數(shù)章末拔尖卷(人教版)_第4頁
專題284銳角三角函數(shù)章末拔尖卷(人教版)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第28章銳角三角函數(shù)章末拔尖卷【人教版】參考答案與試題解析選擇題(共10小題,滿分30分,每小題3分)1.(3分)(2023秋·廣東梅州·九年級(jí)廣東梅縣東山中學(xué)校考期末)在△ABC中,∠A、∠B都是銳角,且sinA=32,cosBA.等腰三角形 B.等邊三角形 C.直角三角形 D.鈍角三角形【答案】B【分析】根據(jù)特殊角的三角函數(shù)值求出∠A=60°,【詳解】解:∵sinA=32∴∠A∴∠C∴△ABC故選:B.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值,熟練掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.2.(3分)(2023秋·全國·九年級(jí)期末)直角三角形紙片ABC,兩直角邊BC=4,AC=8,現(xiàn)將△ABC紙片按如圖那樣折疊,使A與電B重合,折痕為DE,則tanA.12 B.34 C.1 D【答案】B【分析】根據(jù)折疊的性質(zhì)得出BE=AE,設(shè)CE=x,則BE=AE=8-【詳解】解:∵△ADE沿DE折疊得到△∴BE=設(shè)CE=x,則在Rt△BCE中,根據(jù)勾股定理可得:即42+x∴tan∠故選:B.【點(diǎn)睛】本題主要考查了折疊的性質(zhì),勾股定理,正切的定義,解題的關(guān)鍵是掌握折疊前后對應(yīng)邊相等.3.(3分)(2023春·山東青島·九年級(jí)華東師范大學(xué)青島實(shí)驗(yàn)中學(xué)校聯(lián)考開學(xué)考試)如圖,△ABC的頂點(diǎn)分別在單位長度為1的正方形網(wǎng)格的格點(diǎn)上,則sinA.5 B.55 C.12 D【答案】B【分析】過B作BD⊥AC于點(diǎn)D,根據(jù)勾股定理得出AB,AC的值,再利用面積公式求出【詳解】解:如圖,過B作BD⊥AC根據(jù)勾股定理得:AB∴SΔABC∴BD∴sin故選:B.【點(diǎn)睛】本題考查了正弦值,勾股定理與網(wǎng)格,三角形的面積等知識(shí)點(diǎn),解題的關(guān)鍵在于構(gòu)造直角三角形.4.(3分)(2023秋·江蘇泰州·九年級(jí)統(tǒng)考期末)如圖,在△ABC中,∠C=90°,點(diǎn)D、E分別在BC、AC上,AD、BE交于F,若BD=A.12 B.23 C.34【答案】C【分析】如圖,過A作AG∥BC,交BE的延長線于G,證明△AGF≌△DBFAAS,則AG=BD=12【詳解】解:如圖,過A作AG∥BC,交BE的延長線于G∴∠G在△AGF和△∵∠G∴△AGF∴AG=∵∠G=∠CBE∴△AEG∴AECE=AG∴AC=∴tan∠故選:C.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),正切等知識(shí).解題的關(guān)鍵在于對知識(shí)的熟練掌握與靈活運(yùn)用.5.(3分)(2023秋·廣東佛山·九年級(jí)校考期末)一塊直角三角板ABC按如圖放置,頂點(diǎn)A的坐標(biāo)為(0,1),直角頂點(diǎn)C的坐標(biāo)為(-3,0),∠B=30°,則點(diǎn)

A.(-3-33,33) B.(-3+3,3)【答案】D【分析】過點(diǎn)B作BE⊥OC于點(diǎn)E,根據(jù)ΔABC為直角三角形可證明ΔBCE∽ΔCAO,求出AC=10,求出【詳解】解:過點(diǎn)B作BE⊥OC于點(diǎn)

∵△ABC∴∠BCE∴ΔBCE∴BEOC在Rt△ACO中,在Rt△ABC中,∴tan∠∴BC=∴BE3解得BE=33,∴EO=∴點(diǎn)B的坐標(biāo)為(-3-3,3故選:D.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),銳角三角函數(shù)以及坐標(biāo)與圖形的性質(zhì),解答本題的關(guān)鍵是正確作出輔助線,證明三角形的相似,進(jìn)而求解.6.(3分)(2023秋·山東聊城·九年級(jí)統(tǒng)考期末)在Rt△ABC中,∠A=90°,有一個(gè)銳角為60°,BC=6,若點(diǎn)P在直線AC上(不與點(diǎn)A、C重合),且∠A.6或23 B.6或43 C.23或43 D.6【答案】D【分析】根據(jù)點(diǎn)P在直線AC上的不同位置,∠ABP【詳解】如圖1:當(dāng)∠C=60°時(shí),∠ABC如圖2:當(dāng)∠C=60°時(shí),∵∠ABP∴∠CBP∴△PBC∴CP=如圖3:當(dāng)∠ABC=60°時(shí),∵∠ABP∴∠PBC∴PC=∵BC=6∴AB=3∴PC如圖4:當(dāng)∠ABC=60°時(shí),∵∠ABP∴∠PBC∴PC故選:D【點(diǎn)睛】本題考查利用特殊角的三角函數(shù)值求線段的長,解題的關(guān)鍵是確定點(diǎn)P在直線AC上的不同位置.7.(3分)(2023秋·黑龍江牡丹江·九年級(jí)統(tǒng)考期末)如圖,延長等腰RtΔABC斜邊AB到D,使BD=2AB,連接CD,則tan∠A.23 B.1 C.13 D【答案】A【分析】過點(diǎn)D作DE垂直于CB的延長線于點(diǎn)E,設(shè)AC=BC=a,根據(jù)勾股定理得AB=2a,由等腰直角三角形的性質(zhì)得∠ABC=∠BAC=45°,從而得BD=2AB=22a,在Rt△BDE中,解直角三角形得DE=2a,BE=2a,進(jìn)而求得CE=【詳解】解:過點(diǎn)D作DE垂直于CB的延長線于點(diǎn)E,如下圖,設(shè)AC=BC=a,∵AC⊥BC,AC=BC=a,∴AB=AC2+BC2=2a,∴∠ABC=∠BAC=45°,BD=2∴∠DBE=∠ABC=45°,∵DE⊥CE,∴DE=BD·sin∠DBE=2∴CE=BC+BE=3a,∴tan∠故選:A.【點(diǎn)睛】本題主要考查了勾股定理,等腰直角三角形的性質(zhì),解直角三角形,熟練解直角三角形是解題的關(guān)鍵.8.(3分)(2023春·浙江·九年級(jí)期末)如圖,在△ABC中,∠ACB=90°,分別以AB,AC,BC為邊向外作正方形,連結(jié)CD,若sin∠BCDA.23 B.34 C.710【答案】D【分析】過點(diǎn)B作BE⊥CD于點(diǎn)E,過點(diǎn)C作CF⊥AB于點(diǎn)F,可得△ABC,△BED,△BEC,△BCF都是直角三角形,根據(jù)sin∠BCE=BEBC=35,設(shè)BE=3a,BC=5a,得CE=BC2-BE2=4a,過點(diǎn)C作DB延長線于點(diǎn)G,得矩形CFBG,設(shè)AC=【詳解】解:如圖,過點(diǎn)B作BE⊥CD于點(diǎn)E,過點(diǎn)C作CF⊥AB于點(diǎn)F,∴△ABC,△BED,△BEC,△BCF都是直角三角形,∵sin∠BCD=35∴sin∠BCE=BEBC設(shè)BE=3a,BC=5a,∴CE=BC2-B過點(diǎn)C作DB延長線于點(diǎn)G,得矩形CFBG,∴BF=CG,設(shè)AC=x,AB=y(tǒng),在Rt△ABC中,根據(jù)勾股定理,得AB2﹣AC2=BC2,∴y2﹣x2=25a2,∵S△ABC=12×AB?CF=12×∴y?CF=5ax,∴CF=5ax在Rt△BCF中,根據(jù)勾股定理,得BF=BC2-CF∴BF=CG=25y在正方形ABDH中,AB=BD=y(tǒng),在Rt△BDE中,根據(jù)勾股定理,得DE=BD2-∴CD=CE+ED=4a+y2∵S△CBD=12×CD?BE=12×∴CD?BE=BD?CG,∴(4a+y2-9a2)×3∴y2-9∴tan∠CDB=tan∠EDB=BEDE=3ay故選:D.【點(diǎn)睛】本題屬于幾何綜合題,是選擇題壓軸題,考查了正方形的性質(zhì),勾股定理,三角形的面積,解直角三角形,解決本題的關(guān)鍵是設(shè)參數(shù)利用勾股定理列方程.9.(3分)(2023春·浙江·九年級(jí)期末)如圖1是由四個(gè)全等的直角三角形組成的“風(fēng)車”圖案,其中∠AOB=90°,延長直角三角形的斜邊恰好交于另一直角三角形的斜邊中點(diǎn),得到如圖2,若IJ=2,則該“風(fēng)車A.2+1 B.22 C.4-2【答案】B【分析】連接AC,由題意可得Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH,進(jìn)而說明△OAC為等腰直角三角形,再說明分CD、GI垂直平分AB,進(jìn)而說明∠OBH=∠OHB=45°,然后再運(yùn)用解直角三角形求得AI,然后再求得三角形AOB的面積,最后求風(fēng)車面積即可.【詳解】解:如圖:連接AC由題意可得:Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH∴OA=OC,∠OAB=∠OCD∵∠AOC=∠AOB=90°∴△OAC為等腰直角三角形又∵∠OAB=∠OCD:∴∠AJD=180°∠ADJ∠OAB=180°∠ODC∠OCD=90°,即AJ⊥CD又∵CJ=DJ∴AJ垂直平分CD同理:GI垂直平分AB∴AC=AD,AJ是等腰三角形頂角∠CAD的角平分線即∠DAJ=12∠CAD=1易得IH=BJ,IJ=IB+BJ=IB+IH又∵IB=IA∴IJ=IB+BJ=IH+IA=2在Rt△ABO中,∠ABH=∠BAH=22.5°∴∠OBH=OHB=45°設(shè)OB=OH=a,即AH=BH=2OB=2a∴tan∠A=BOAO∴IH設(shè)IH=(2-1)x,AI∴IH+IA=2x=2,即x∴S△又∵S∴S△∴S∴S風(fēng)車故選B.【點(diǎn)睛】本題主要考查了解直角三角形的應(yīng)用、等腰直角三角形的判定與性質(zhì)等知識(shí)點(diǎn),靈活應(yīng)用相關(guān)知識(shí)以及數(shù)形結(jié)合思想成為解答本題的關(guān)鍵.二.填空題(共6小題,滿分18分,每小題3分)10.(3分)(2023秋·遼寧沈陽·九年級(jí)統(tǒng)考期末)如圖,在Rt△ABC中,∠C=90°,點(diǎn)D,E分別在AC,BC邊上,且AD=3,BE=4,連接AE,BD,交于點(diǎn)F,BD=10【答案】5【分析】過點(diǎn)A作AG∥BE,BG∥AE交于點(diǎn)G,連接DG,勾股定理求得DG,過點(diǎn)D作【詳解】解:如圖所示,過點(diǎn)A作AG∥BE,BG∥AE交于點(diǎn)則四邊形AGBE是平行四邊形,∴AG=BE∵∠C=90°∴AG∴△ADG∴DG∵cos∴∠∵AE∴∠∵DG過點(diǎn)D作DH⊥∵sin∴DH=∴G,∴AE故答案為:53【點(diǎn)睛】本題考查了解直角三角形,含30度角的直角三角形的性質(zhì),勾股定理,平行四邊形的性質(zhì),正確的添加輔助線是解題的關(guān)鍵.11.(3分)(2023秋·安徽六安·九年級(jí)??计谀┤鐖D,在菱形ABCD中,tan∠ABC=43,AE⊥BC于點(diǎn)E,AE的延長線與DC的延長線交于點(diǎn)

【答案】4:21【分析】設(shè)AE=4k,則BE=3k,根據(jù)勾股定理求出【詳解】解∶∵tan∠ABC=∴tan∠設(shè)AE=4k,則∴AB=∵四邊形ABCD是菱形,∴CB∥AD,∴CE=∵CB∥∴△CEF∴S△∴S△故答案為:4:21.【點(diǎn)睛】本題考查了正切、相似三角形的判定與性質(zhì),菱形的性質(zhì),勾股定理等知識(shí),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.12.(3分)(2023秋·遼寧錦州·九年級(jí)統(tǒng)考期末)如圖,在矩形ABCD中,AB=3,AD=4,E是對角線BD上一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)B,D重合),當(dāng)△ABE

【答案】2或52或【分析】分AB=【詳解】解:在矩形ABCD中,AB=3,∴∠BAD∴BD=當(dāng)AB=AE時(shí),過點(diǎn)A作AF⊥

則AF⊥∴cos∠∴BF∴DE=當(dāng)BA=BE時(shí),

當(dāng)EA=EB時(shí),過點(diǎn)E作EG⊥

∴EG∥AD,∴BEED∴DE=綜上所述DE=2或52或故答案為:2或52或7【點(diǎn)睛】本題考查了矩形的性質(zhì),等腰三角形的性質(zhì),平行線分線段成比例,求一個(gè)角的余弦,勾股定理,熟練掌握以上知識(shí)是解題的關(guān)鍵.13.(3分)(2023春·全國·九年級(jí)期末)如圖,已知點(diǎn)P是菱形ABCD的對角線AC延長線上一點(diǎn),過點(diǎn)P分別作AD,DC延長線的垂線,垂足分別為點(diǎn)E,F(xiàn).若∠ABC=120°,AB=6,則PE-

【答案】3【分析】如圖,延長BC交EP于M,由菱形的性質(zhì)可知,CP為∠BCD,∠FCM的平分線,則PF=PM,PE-PF=PE-PM=EM,由題意知,EM為△ABD【詳解】解:如圖,延長BC交EP于M,

由菱形的性質(zhì)可知,CP為∠BCD,∠∵PF⊥CF,∴PF=∴PE-由題意知,EM為△ABD底邊AD∵菱形ABCD,∠ABC=120°,∴∠BAD∴EM=∴PE-故答案為:33【點(diǎn)睛】本題考查了菱形的性質(zhì),角平分線的性質(zhì),正弦.解題的關(guān)鍵在于對知識(shí)的熟練掌握與靈活運(yùn)用.14.(3分)(2023·廣東深圳·深圳市寶安第一外國語學(xué)校校考模擬預(yù)測)如圖,在正方形ABCD中,M,N分別是AB,CD的中點(diǎn),P是線段MN上的一點(diǎn),BP的延長線交4D于點(diǎn)E,連接PD,PC,將△DEP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得△GFP,則下列結(jié)論:①CP=GP,②tan∠CGF=1;③BC垂直平分FG;④若AB=4,點(diǎn)【答案】①②③【分析】延長GF交AD于點(diǎn)H,連接FC,F(xiàn)B,F(xiàn)A,由已知可得MN為AB,CD的垂直平分線,由垂直平分線的性質(zhì)和圖形旋轉(zhuǎn)的性質(zhì)可得①的結(jié)論正確;利用三角形的內(nèi)角和定理和等腰三角形的性質(zhì)計(jì)算可得∠BCG=45°,由四邊形內(nèi)角和定理通過計(jì)算可得∠EHF=90°;利用平行線的性質(zhì)可得BC⊥FG,則∠CGF=45°,可說明②的結(jié)論正確;通過證明點(diǎn)A,B,E,F(xiàn)在以點(diǎn)P為圓心,PA為半徑的同一個(gè)圓上,利用圓周角定理可得∠FAB=45°,得到A,F(xiàn),C三點(diǎn)共線,得到△CGF為等腰直角三角形,則③的結(jié)論正確;由題意點(diǎn)【詳解】解:延長GF交AD于點(diǎn)H,連接FC,F(xiàn)B,F(xiàn)A,如圖,∵正方形ABCD中,M,N分別是AB,CD的中點(diǎn),∴MN是線段BA,CD∴PD=PC∵△FPG是△PED繞點(diǎn)P順時(shí)針旋轉(zhuǎn)∴△FPG≌△∴PD∴PC∴①的結(jié)論正確;∵PD∴∠PDC∵PC∴∠PCG∴∠PCD∵∠DPC∴∠PCD∵∠BCD∴∠BCG∵△FPG≌△∴∠DEP∵∠HFP∴∠DEP∵∠DEP∴∠EHF∴∠EPF∴∠EHF即GH⊥∵AD∴GF∴∠CGF∴tan∴②的結(jié)論正確;∵PA=PB∴∠APM∵PM∴∠PEA=∠BPM∴∠PEA∴PA∵PE∴PA∴點(diǎn)A,B,E,F(xiàn)在以點(diǎn)P為圓心,PA為半徑的同一個(gè)圓上.∴∠FAB∴點(diǎn)F在對角線AC上,∴∠FCB∵∠BCG∴△FCG∵BC平分∠∴BC垂直平分FG∴③的結(jié)論正確;由以上可知:點(diǎn)F在正方形的對角線AC上運(yùn)動(dòng),∴當(dāng)EF⊥AC時(shí),此時(shí)點(diǎn)E與點(diǎn)D重合,∴DF∴④的結(jié)論不正確.綜上,結(jié)論正確的序號(hào)有:①②③,故答案為:①②③.【點(diǎn)睛】本題是幾何變換綜合題,主要考查了正方形的性質(zhì),軸對稱,線段垂直平分線的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),特殊角的三角函數(shù)值,直角三角形的邊角關(guān)系,圓周角定理,垂線段的性質(zhì),四點(diǎn)共圓的判定與性質(zhì),圖形旋轉(zhuǎn)的性質(zhì),熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.15.(3分)(2023秋·山東東營·九年級(jí)東營市勝利第一初級(jí)中學(xué)??计谀┤鐖D,△AB1A1,△A1B2A2,△A2B3A3,…是等邊三角形,直線y=33x+2經(jīng)過它們的頂點(diǎn)A,

【答案】2【分析】設(shè)直線y=33x+2與x軸交于點(diǎn)C,求出點(diǎn)A、C的坐標(biāo),可得OA=2,OC=23,推出∠CB1A1=90°,∠【詳解】解:如圖所示,設(shè)直線y=33x+2

當(dāng)x=0時(shí),y=2;當(dāng)y=0∴A0,2,C∴OA=2,OC∴tan∠∴∠ACO∵△A∴∠A∴∠CB1∴AC=∵AO⊥∴OB∴CB同理,CB2=2CB∴CB2022=∴B2022故答案為:22023【點(diǎn)睛】本題主要考查一次函數(shù)圖象與幾何的變換規(guī)律的綜合,解直角三角形,理解等邊三角形的性質(zhì),一次函數(shù)圖像的性質(zhì)和特點(diǎn),找到點(diǎn)的變換規(guī)律是解題的關(guān)鍵.16.(3分)(2023秋·四川成都·九年級(jí)成都七中??计谀┤鐖D,E、F、G、H分別是矩形的邊AB、BC、CD、AD上的點(diǎn),AH=CF,AE=CG,∠EHF=60°,∠GHF=45°,若【答案】8+4【分析】先構(gòu)造15°的直角三角形,求得15°的余弦和正切值;作EK⊥FH,可求得EH:EF=2:6;作∠ARH=∠BFT=15°,分別交直線AB于R和T,構(gòu)造“一線三等角【詳解】解:如圖1,Rt△PMN中,∠P=15°,設(shè)MN=1,則PQ=NQ=2,∴cos15°=6如圖2,作EK⊥FH于K,作∠AHR=∠BFT=15°,分別交直線∵四邊形ABCD是矩形,∴∠A在△AEH與△AE=∴△AEH∴EH同理證得△EBF≌△GDH∴四邊形EFGH是平行四邊形,設(shè)HK=a,則EH=2∴EF∵∠EAH∴∠R∴∠R可得:FT=BFcos15°=∴FTER∴26∴ER∴AE∴tan∴∠AEH∴HG∵∠BEF∴∠BEF∴EF∴EH∴2(EH∴四邊形EFGH的周長為:8+46故答案為:8+46【點(diǎn)睛】本題考查了矩形性質(zhì),全等三角形判定和性質(zhì),解直角三角形,構(gòu)造15°特殊角的圖形及其求15°的函數(shù)值,相似三角形的判定和性質(zhì)等知識(shí),解決問題的關(guān)鍵是作輔助線,構(gòu)造“一線三等角”及構(gòu)造15°直角三角形求其三角函數(shù)值.三.解答題(共7小題,滿分52分)17.(6分)(2023秋·山東東營·九年級(jí)校聯(lián)考期中)計(jì)算:(1)2sin(2)(π【答案】(1)2(2)4【分析】(1)先將特殊角的三角函數(shù)值代入,再進(jìn)行計(jì)算即可;(2)先計(jì)算零指數(shù)冪,特殊角三角函數(shù)值,化簡二次根式,絕對值,再根據(jù)實(shí)數(shù)的混合運(yùn)算法則求解即可.【詳解】(1)原式====2.(2)原式=1+4×=1+2=4.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值計(jì)算和二次根式的運(yùn)算,熟練掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.18.(6分)(2023秋·安徽六安·九年級(jí)??计谥校┤鐖D,在△ABC中,AD⊥BC于點(diǎn)D,若AD=6,

求:(1)CD的長;(2)sin∠【答案】(1)CD(2)3【分析】(1)根據(jù)正切的定義得到tan∠(2)根據(jù)(1)所求求出BD=8,進(jìn)而求出AB=10,再根據(jù)正弦的定義求出【詳解】(1)解:∵AD⊥∴∠ADB在Rt△ADC中,tan∠∴CD=4(2)解:由(2)得CD=4∴BD=∴AB=在Rt△ABD中,sin∠【點(diǎn)睛】本題主要考查了解直角三角形,勾股定理,熟知正弦和正切的定義是解題的關(guān)鍵.19.(8分)(2023春·河南南陽·九年級(jí)統(tǒng)考期中)如圖,已知點(diǎn)A(7,8)、C(0,6),AB⊥x軸,垂足為點(diǎn)B,點(diǎn)D在線段OB上,DE∥AC,交AB于點(diǎn)E,EF∥CD,交AC于點(diǎn)F.(1)求經(jīng)過A、C兩點(diǎn)的直線的表達(dá)式;(2)設(shè)OD=t,BE=s,求s與t的函數(shù)關(guān)系式;(3)是否存在點(diǎn)D,使四邊形CDEF為矩形?若存在,請直接寫出點(diǎn)D的坐標(biāo);若不存在,請說明理由.【答案】(1)y=27x+6;(2)s=2﹣27t(0<t<7);(3)點(diǎn)D的坐標(biāo)為(127【分析】(1)將點(diǎn)A、C的坐標(biāo)代入一次函數(shù)表達(dá)式y(tǒng)=kx+b,即可求解;(2)根據(jù)題意可得點(diǎn)D(t,0),點(diǎn)E(7,s),根據(jù)一次函數(shù)的圖象及性質(zhì),可得直線DE的表達(dá)式為:y=27x﹣27t,將點(diǎn)(3)設(shè)點(diǎn)D(t,0),證明∠OCD=∠BDE,則tan∠OCD=tan∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論