2025屆四川省華鎣一中數(shù)學(xué)高二上期末考試試題含解析_第1頁
2025屆四川省華鎣一中數(shù)學(xué)高二上期末考試試題含解析_第2頁
2025屆四川省華鎣一中數(shù)學(xué)高二上期末考試試題含解析_第3頁
2025屆四川省華鎣一中數(shù)學(xué)高二上期末考試試題含解析_第4頁
2025屆四川省華鎣一中數(shù)學(xué)高二上期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆四川省華鎣一中數(shù)學(xué)高二上期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙、丁四人站成一列,要求甲站在最前面,則不同的排法有()A.24種 B.6種C.4種 D.12種2.拋物線y=4x2的焦點坐標是()A.(0,1) B.(1,0)C. D.3.設(shè)直線,.若,則的值為()A.或 B.或C. D.4.已知等比數(shù)列,且,則()A.16 B.32C.24 D.645.下列三個命題:①“若,則a,b全為0”的逆否命題是“若a,b全不為0,則”;②若事件A與事件B互斥,則;③設(shè)命題p:若m是質(zhì)數(shù),則m一定是奇數(shù),那么是真命題;其中真命題的個數(shù)為()A.3 B.2C.1 D.06.直線的傾斜角為()A.1 B.-1C. D.7.直線在y軸上的截距為()A. B.C. D.8.設(shè)函數(shù)在上可導(dǎo),則等于()A. B.C. D.以上都不對9.直線x-y+1=0被橢圓+y2=1所截得的弦長|AB|等于()A. B.C. D.10.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則為()A. B.C. D.11.若方程表示雙曲線,則()A. B.C. D.12.若定義在R上的函數(shù)滿足,則不等式的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知原命題為“若,則”,則它的逆否命題是__________(填寫”真命題”或”假命題”)14.設(shè),則曲線在點處的切線的傾斜角是_______15.平面直角坐標系內(nèi)動點M()與定點F(4,0)的距離和M到定直線的距離之比是常數(shù),則動點M的軌跡是___________16.數(shù)列滿足,則_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.18.(12分)設(shè)命題方程表示中心在原點,焦點在坐標軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數(shù)的取值范圍.19.(12分)已知函數(shù)(1)當時,討論的單調(diào)性;(2)當時,證明20.(12分)如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.(1)求證:平面;(2)求二面角的正弦值;(3)設(shè)為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.21.(12分)已知拋物線的焦點為,點在拋物線上,當以為始邊,為終邊的角時,.(1)求的方程(2)過點的直線交于兩點,以為直徑的圓平行于軸的直線相切于點,線段交于點,求的面積與的面積的比值22.(10分)已知函數(shù)(1)求的單調(diào)區(qū)間;(2)若,求的最大值與最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知可得只需對剩下3人全排即可【詳解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,則只需對剩下3人全排即可,則不同的排法共有,故選:B2、C【解析】將拋物線方程化為標準方程,由此可拋物線的焦點坐標得選項.【詳解】解:將拋物線y=4x2的化為標準方程為x2=y(tǒng),p=,開口向上,焦點在y軸的正半軸上,故焦點坐標為(0,).故選:C3、A【解析】由兩直線垂直可得出關(guān)于實數(shù)的等式,即可解得實數(shù)的值.【詳解】因為,則,解得或.故選:A.4、A【解析】由等比數(shù)列的定義先求出公比,然后可解..【詳解】,得故選:A5、B【解析】寫出逆否命題可判斷①;根據(jù)互斥事件的概率定義可判斷②;根據(jù)寫出再判斷真假可判斷③.【詳解】對于①,“,則a,b全為0”的逆否命題是“若a,b不全為0,則”,故①錯誤;對于②,滿足互斥事件的概率求和的方法,所以②為真命題;③命題p:若m是質(zhì)數(shù),則m一定是奇數(shù).2是質(zhì)數(shù),但2是偶數(shù),命題p是假命題,那么真命題故選:B.6、C【解析】根據(jù)直線斜率的定義即可求解.【詳解】,斜率為1,則傾斜角為.故選:C.7、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D8、C【解析】根據(jù)目標式,結(jié)合導(dǎo)數(shù)的定義即可得結(jié)果.【詳解】.故選:C9、A【解析】聯(lián)立方程組,求出交點坐標,利用兩點間的距離公式求距離.【詳解】由得交點為(0,1),,則|AB|==.故選:A.10、B【解析】根據(jù)空間向量運算求得正確答案.【詳解】.故選:B11、C【解析】根據(jù)曲線方程表示雙曲線方程有,即可求參數(shù)范圍.【詳解】由題設(shè),,可得.故選:C.12、B【解析】構(gòu)造函數(shù),根據(jù)題意,求得其單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】構(gòu)造函數(shù),則,故在上單調(diào)遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點睛】本題考察利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,以及利用函數(shù)單調(diào)性求解不等式,解決本題的關(guān)鍵是根據(jù)題意構(gòu)造函數(shù),屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、真命題【解析】先判斷原命題的真假,再由逆否命題與原命題是等價命題判斷.【詳解】因為命題“若,則”是真命題,且逆否命題與原命題是等價命題,所以它的逆否命題是真命題,故答案為:真命題14、【解析】利用導(dǎo)數(shù)的定義,化簡整理,可得,根據(jù)導(dǎo)數(shù)的幾何意義,即可求得答案.【詳解】因為=,所以,則曲線在點處的切線斜率為,即,又所以所求切線的傾斜角為故答案為:15、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動點與定點的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點的軌跡就是集合,由此得.將上式兩邊平方,并化簡,得所以,動點的軌跡是長軸長、短軸長分別為12、的橢圓故答案為:16、【解析】利用來求得,進而求得正確答案.【詳解】,,是數(shù)列是首項為,公差為的等差數(shù)列,所以,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)結(jié)合拋物線的定義求得,由此求得拋物線的方程.(2)設(shè),根據(jù)三角形的面積列方程,求得的值,進而求得點的坐標.【小問1詳解】由拋物線的方程可得其準線方程,依拋物線的性質(zhì)得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設(shè),則點到直線的距離,又,由題意得,解得或.∴點的坐標是或.18、【解析】求出當命題、分別為真命題時實數(shù)的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對應(yīng)的實數(shù)的取值范圍,綜合可得結(jié)果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因為“”為假命題,“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時.綜上所述,實數(shù)的范圍為.19、(1)單調(diào)遞減,在單調(diào)遞增;(2)見解析.【解析】(1)求f(x)導(dǎo)數(shù),討論導(dǎo)數(shù)的正負即可求其單調(diào)性;(2)由于,則,只需證明,構(gòu)造函數(shù),證明其最小值大于0即可.【小問1詳解】時,,當時,,∴,當時,,∴,∴在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】由于,∴,∴只需證明,令,則,∴在上為增函數(shù),而,∴在上有唯一零點,且,當時,,g(x)單調(diào)遞減,當時,,g(x)單調(diào)遞增,∴的最小值為,由,得,則,∴,當且僅當時取等號,而,∴,∴,即,∴當時,.【點睛】本題考察了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,也考察了利用導(dǎo)數(shù)研究函數(shù)的最值,解題過程中設(shè)計到隱零點的問題,需要掌握隱零點處理問題的常見思路和方法.20、(1)證明見解析;(2);(3).【解析】(1)由已知證得,,,以為坐標原點,建立如圖所示的空間直角坐標系,根據(jù)向量垂直的坐標表示和線面垂直的判定定理可得證;(2)根據(jù)二面角的空間向量求解方法可得答案;(3)設(shè),表示點Q,再利用線面角的空間向量求解方法,建立方程解得,可得答案.【詳解】(1)因為平面,平面,平面,所以,,又因為,則以為坐標原點,建立如圖所示的空間直角坐標系,由已知可得,,,,,,所以,,,因為,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作為平面的法向量,設(shè)平面的法向量因為,.所以,即,不妨設(shè),得.,又由圖示知二面角為銳角,所以二面角的正弦值為.(3)設(shè),即,,所以,即,因為直線與平面所成角的正弦值為,所以,即,解得,即.【點睛】本題考查利用空間向量求線面垂直、線面角、二面角的求法,向量法求二面角的步驟:建、設(shè)、求、算、取:1、建:建立空間直角坐標系,以三條互相垂直的垂線的交點為原點;2、設(shè):設(shè)所需點的坐標,并得出所需向量的坐標;3、求:求出兩個面的法向量;4、算:運用向量的數(shù)量積運算,求兩個法向量的夾角的余弦值;5、取:根據(jù)二面角的范圍和圖示得出的二面角是銳角還是鈍角,再取值.21、(1)(2)【解析】(1)過點作,垂足為,過點作,垂足為,根據(jù)拋物線的定義,得到,求得,即可求得拋物線的方程;(2)設(shè)直線的方程為,聯(lián)立方程組求得,得到,由拋物線的定義得到,根據(jù),求得,設(shè),得到,進而求得,因為為的中點,求得,即可求解.【小問1詳解】解:由題意,拋物線,可得其準線方程,如圖所示,過點作,垂足為,過點作,垂足為,因為時,,可得,又由拋物線的定義,可得,解得,所以拋物線的方程為.【小問2詳解】解:由拋物線,可得,設(shè),因為直線的直線過點,設(shè)直線的方程為聯(lián)立方程組,整理得,可得,則,因為為的中點,所以,由拋物線的定義得,設(shè)圓與直線相切于點,因為交于點,所以且,所以,即,解得,設(shè),則,且,可得,因為,所以點為的中點,所以,又因為為的中點,可得,所以,即的面積與的面積的比值為.22、(1)單調(diào)遞增

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論