版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省廈門六中2025屆數(shù)學(xué)高二上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,,則()A. B.C. D.2.若數(shù)列滿足,則的值為()A.2 B.C. D.3.已知函數(shù),則曲線在點處的切線方程為()A. B.C. D.4.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.5.中國古代數(shù)學(xué)著作算法統(tǒng)宗中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見首日行里數(shù),請公仔細算相還.”其大意為:有一個人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里6.已知等差數(shù)列的前n項和為,,,若(),則n的值為()A.15 B.14C.13 D.127.已知數(shù)列的前項和滿足,記數(shù)列的前項和為,.則使得的值為()A. B.C. D.8.在四棱錐中,底面為平行四邊形,為邊的中點,為邊上的一列點,連接,交于,且,其中數(shù)列的首項,則()A. B.為等比數(shù)列C. D.9.設(shè)是等比數(shù)列,且,,則()A.12 B.24C.30 D.3210.拋物線的焦點坐標為A. B.C. D.11.在各項都為正數(shù)的等比數(shù)列中,首項,前3項和為21,則()A.84 B.72C.33 D.18912.在等差數(shù)列中,若,則()A.5 B.6C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,滿足,則________14.寫出一個離心率且焦點在軸上的雙曲線的標準方程________,并寫出該雙曲線的漸近線方程________15.如圖,在等腰直角中,,為半圓弧上異于,的動點,當半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點,使得;②存在點,使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J為正確的結(jié)果的序號).16.已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)求的單調(diào)區(qū)間;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,以坐標原點O為圓心的圓與直線相切.(1)求圓O的方程;(2)設(shè)圓O交x軸于A,B兩點,點P在圓O內(nèi),且是、的等比中項,求的取值范圍.18.(12分)已知圓:與直線:.(1)證明:直線過定點,并求出其坐標;(2)當時,直線l與圓C交于A,B兩點,求弦的長度.19.(12分)已知橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,,求20.(12分)已知拋物線的焦點為,點為拋物線上一點,且.(1)求拋物線方程;(2)直線與拋物線相交于兩個不同的點,為坐標原點,若,求實數(shù)的值;21.(12分)已知拋物線E:y2=8x(1)求拋物線的焦點及準線方程;(2)過點P(-1,1)的直線l1與拋物線E只有一個公共點,求直線l1的方程;(3)過點M(2,3)的直線l2與拋物線E交于點A,B.若弦AB的中點為M,求直線l2的方程22.(10分)已知函數(shù),當時,有極大值3(1)求的值;(2)求函數(shù)的極小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)和冪函數(shù)的單調(diào)性可得正確的選項.【詳解】因為,故,故,又,在上的增函數(shù),故,故,故選:D.2、C【解析】通過列舉得到數(shù)列具有周期性,,所以.詳解】,同理可得:,可得,則.故選:C.3、A【解析】求出函數(shù)的導(dǎo)函數(shù),再求出,然后利用導(dǎo)數(shù)的幾何意義求解作答.【詳解】函數(shù),求導(dǎo)得:,則,而,于是得:,即,所以曲線在點處的切線方程為.故選:A4、D【解析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關(guān)系即可得到答案.【詳解】因為直線與垂直,且,所以,解得,設(shè)的傾斜角為,,所以.故選:D5、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C6、B【解析】由已知條件列方程組求出,再由列方程求n的值【詳解】設(shè)等差數(shù)列的公差為,則由,,得,解得,因為,所以,即,解得或(舍去),故選:B7、B【解析】由,求得,得到,結(jié)合裂項法求和,即可求解.【詳解】數(shù)列的前項和滿足,當時,;當時,,當時,適合上式,所以,則,所以.故選:B.8、A【解析】由得,為邊的中點得,設(shè),所以,根據(jù)向量相等可判斷A選項;由得是公比為的等比數(shù)列,可判斷B選項;代入可判斷C選項;當時可判斷D選項.【詳解】由得,因為為邊的中點,所以,所以設(shè),所以,所以,當時,A選項正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項錯誤;所以,由得,故C選項錯誤;當時,,所以,此時為的中點,與重合,即,,故D錯誤.故選:A.9、D【解析】根據(jù)已知條件求得的值,再由可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,,因此,.故選:D.【點睛】本題主要考查等比數(shù)列基本量的計算,屬于基礎(chǔ)題10、D【解析】拋物線的標準方程為,從而可得其焦點坐標【詳解】拋物線的標準方程為,故其焦點坐標為,故選D.【點睛】本題考查拋物線的性質(zhì),屬基礎(chǔ)題11、A【解析】分析:設(shè)等比數(shù)列的公比為,根據(jù)前三項的和為列方程,結(jié)合等比數(shù)列中,各項都為正數(shù),解得,從而可以求出的值.詳解:設(shè)等比數(shù)列的公比為,首項為3,前三項的和為,,解之得或,在等比數(shù)列中,各項都為正數(shù),公比為正數(shù),舍去),,故選A.點睛:本題考查以一個特殊的等比數(shù)列為載體,通過求連續(xù)三項和的問題,著重考查了等比數(shù)列的通項,等比數(shù)列的性質(zhì)和前項和等知識點,屬于簡單題.12、B【解析】由得出.【詳解】由可得,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】根據(jù)遞推公式,依次代入即可求解.【詳解】數(shù)列滿足,當時,可得,當時,可得,當時,可得,故答案為:15.14、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結(jié)合雙曲線參數(shù)關(guān)系寫出一個符合要求的雙曲線方程,進而寫出對應(yīng)的漸近線方程.【詳解】由題設(shè),可令雙曲線為且,∴,則,故為其中一個標準方程,此時漸近線方程為.故答案為:,(答案不唯一).15、①②④【解析】①當D為中點,且A,B,C,D四點共面時,可證得四邊形ABCD為正方形即可判斷①;②當D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,作圖分析驗證可判斷④.【詳解】①當D為中點,且A,B,C,D四點共面時,連結(jié)BD,交AC于,則為AC中點,此時,且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,此時有:平面ABC,,又因為,所以平面CDB,所以,故②正確;③,當平面平面ABC,且D為中點時,h有最大值;當A,B,C,D四點共面時h有最小值0,此時為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯誤.④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,取AC中點O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.16、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當時,在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于常考題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意設(shè)出圓方程,結(jié)合該圓與直線相切,求得半徑,則問題得解;(2)設(shè)出點的坐標為,根據(jù)題意,求得的等量關(guān)系,再構(gòu)造關(guān)于的函數(shù)關(guān)系,求得函數(shù)值域即可.【小問1詳解】根據(jù)題意,設(shè)的方程為,又該圓與直線相切,故可得,則圓的方程為.【小問2詳解】對圓:,令,則,不妨設(shè),則,設(shè)點,因為點在圓內(nèi),故;因為是、的等比中項,故可得:,則,整理得;由可得,解得,則.故答案為:.18、(1)證明見解析,(2)【解析】(1)將直線方程化為,解方程得出定點;(2)求出圓心到直線的距離,再由幾何法得出弦長.【小問1詳解】證明:因為直線,所以.令,解得,所以不論取何值,直線必過定點【小問2詳解】當時,直線為,圓心圓心到直線的距離,則19、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長,求出直線方程,解出點的坐標即可得解.【詳解】(1)橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),,,整理得:,當時,線段中點坐標,中垂線方程:,;當時,線段中點坐標,中垂線方程:,,綜上所述:.20、(1)(2)【解析】(1)根據(jù)拋物線過點,且,利用拋物線的定義求解;(2)設(shè),聯(lián)立,根據(jù),由,結(jié)合韋達定理求解.【小問1詳解】解:由拋物線過點,且,得所以拋物線方程為;【小問2詳解】設(shè),聯(lián)立得,,,,則,,即,解得或,又當時,直線與拋物線的交點中有一點與原點重合,不符合題意,故舍去;所以實數(shù)的值為.21、(1)焦點為(2,0),準線方程為x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根據(jù)拋物線的方程及其幾何性質(zhì),求焦點和準線;(2)分直線l1的斜率為0和不為0兩種情況,根據(jù)直線與拋物線只有一個公共點,由直線與x軸平行或Δ=0,得解;(3)利用點差法求出直線l2的斜率,即可得直線l2的方程【小問1詳解】由題意,p=4,則焦點為(2,0),準線方程為x=-2【小問2詳解】當直線l1的斜率為0時,y=1;當直線l1的斜率不為0時,設(shè)直線l1為x+1=m(y-1),聯(lián)立,得y2-8my+8m+8=0,因為直線l1與拋物線E只有一個公共點,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直線l1的方程為x-y+2=0或2x+y+1=0,綜上,直線l1為y=1或x-y+2=0或2x+y+1=0【小問3詳解】由題意,直線l2的斜率一定存在,設(shè)其斜率為k,A(x1,y1),B(x2,y2),則8x1,8x2,兩式作差得:8(x1-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024常年物資采購協(xié)議范本
- 2024年舞臺搭建項目專用協(xié)議協(xié)議
- 2024家庭水電安裝項目協(xié)議范本
- 2024年化建筑砂漿采購協(xié)議范本
- 2024年活雞買賣雙方權(quán)益保障協(xié)議
- 2024建設(shè)項目用電合作協(xié)議
- 2024年學(xué)生違紀行為處理協(xié)議
- 2024水電項目專用材料采購協(xié)議范本
- 2024年設(shè)備采購協(xié)議模板2
- 2024年度視頻制作項目協(xié)議格式
- 企業(yè)勞動用工法律風(fēng)險防范實務(wù)與操作技巧
- 小學(xué)科學(xué)教科版六年級上冊全冊課課練(含答案)(2023秋)
- 護理實訓(xùn)室文化墻建設(shè)方案
- 小飾品店計劃書
- 康復(fù)治療行業(yè)發(fā)展趨勢
- 鐵路行車安全管理-行車安全系統(tǒng)管理
- 27.1.1 圓的基本元素 華師版九年級數(shù)學(xué)下冊學(xué)案
- 辛亥革命之意義
- 實驗1-接觸角探測液法測定聚合物表面張力
- 婦科人工流產(chǎn)女性落實高效避孕措施依從性低原因分析魚骨圖柏拉圖對策擬定
- 小學(xué)冬至主題班會-弘揚傳統(tǒng)情暖童心 課件
評論
0/150
提交評論