版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南天一大聯(lián)考2025屆數(shù)學高一上期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=02.已知函數(shù)的零點在區(qū)間上,則()A. B.C. D.3.函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.4.已知點P(3,4)在角的終邊上,則的值為()A B.C. D.5.若冪函數(shù)的圖象過點,則它的單調(diào)遞增區(qū)間是()A.(0,+∞) B.[0,+∞)C.(-∞,+∞) D.(-∞,0)6.函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.7.若,則的大小關(guān)系是()A. B.C. D.8.如圖,在正四棱柱中底面是正方形的直棱柱,側(cè)棱,,則二面角的大小為()A.30° B.45°C.60° D.90°9.已知中,,,點M是線段BC(含端點)上的一點,且,則的取值范圍是()A. B.C. D.10.函數(shù)的定義域為()A.R B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域是_____________12.為了保護水資源,提倡節(jié)約用水,某城市對居民生活用水實行“階梯水價”.計費方式如下表:每戶每月用水量水價不超過12m的部分3元/m超過12m但不超過18m的部分6元/m超過18m的部分9元/m若某戶居民本月交納水費為66元,則此戶居民本月用水量為____________.13.已知某扇形的周長是,面積為,則該扇形的圓心角的弧度數(shù)是______.14.已知,則______15.設(shè),為單位向量.且、的夾角為,若=+3,=2,則向量在方向上的射影為________.16.已知直線與兩坐標軸所圍成的三角形的面積為1,則實數(shù)值是____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.近年來,我國在航天領(lǐng)域取得了巨大成就,得益于我國先進的運載火箭技術(shù).據(jù)了解,在不考慮空氣阻力和地球引力的理想狀態(tài)下,可以用公式計算火箭的最大速度v(單位:m/s).其中(單位m/s)是噴流相對速度,m(單位:kg)是火箭(除推進劑外)的質(zhì)量,M(單位:kg)是推進劑與火箭質(zhì)量的總和,稱為“總質(zhì)比”,已知A型火箭的噴流相對速度為2000m/s參考數(shù)據(jù):,(1)當總質(zhì)比為230時,利用給出的參考數(shù)據(jù)求A型火箭的最大速度;(2)經(jīng)過材料更新和技術(shù)改進后,A型火箭的噴流相對速度提高到了原來的1.5倍,總質(zhì)比變?yōu)樵瓉淼模粢够鸺淖畲笏俣仍黾?00m/s,記此時在材料更新和技術(shù)改進前的總質(zhì)比為T,求不小于T的最小整數(shù)?18.,不等式的解集為(1)求實數(shù)b,c的值;(2)時,求的值域19.如圖,點,,在函數(shù)的圖象上(1)求函數(shù)的解析式;(2)若函數(shù)圖象上的兩點,滿足,,求四邊形OMQN面積的最大值20.已知函數(shù)(其中且)是奇函數(shù).(1)求的值;(2)若對任意的,都有不等式恒成立,求實數(shù)的取值范圍.21.已知的內(nèi)角滿足,若,且,滿足:,,,為,的夾角,求
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】設(shè)出直線方程,利用待定系數(shù)法得到結(jié)果.【詳解】設(shè)與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設(shè)為2、C【解析】根據(jù)解析式,判斷的單調(diào)性,結(jié)合零點存在定理,即可求得零點所在區(qū)間,結(jié)合題意,即可求得.【詳解】函數(shù)的定義域為,且在上單調(diào)遞增,故其至多一個零點;又,,故的零點在區(qū)間,故.故選:3、C【解析】由解出范圍即可.【詳解】由,可得,所以函數(shù)的單調(diào)遞增區(qū)間為,故選C.4、D【解析】利用三角函數(shù)的定義即可求出答案.【詳解】因為點P(3,4)在角的終邊上,所以,,故選:D【點睛】本題考查了三角函數(shù)的定義,三角函數(shù)誘導公式,屬于基礎(chǔ)題.5、D【解析】設(shè)冪函數(shù)為y=xa,把點(2,)代入,求出a的值,從而得到冪函數(shù)的方程,再判斷冪函數(shù)的單調(diào)遞增區(qū)間.【詳解】設(shè)y=xa,則=2a,解得a=-2,∴y=x-2其單調(diào)遞增區(qū)間為(-∞,0)故選D.【點睛】本題考查了通過待定系數(shù)法求冪函數(shù)的解析式,以及冪函數(shù)的主要性質(zhì).6、D【解析】解不等式,即可得出函數(shù)的單調(diào)遞減區(qū)間.【詳解】解不等式,得,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:D.【點睛】本題考查余弦型函數(shù)單調(diào)區(qū)間的求解,考查計算能力,屬于基礎(chǔ)題.7、C【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,把各數(shù)與中間值0,1比較即得【詳解】利用指數(shù)函數(shù)的單調(diào)性知:,即;利用指數(shù)函數(shù)的單調(diào)性知:,即;利用對數(shù)函數(shù)的單調(diào)性知:,即;所以故選:C8、C【解析】連接AC,BD,交點為O,連接,則即為二面角的平面角,再求解即可.【詳解】解:連接AC,BD,交點為O,連接,∵,,,∴平面,即即為二面角的平面角,∵四棱柱中底面是正方形的直棱柱,,,∴,則,∴.故選:C【點睛】本題考查了二面角的平面角的作法,重點考查了運算能力,屬基礎(chǔ)題.9、D【解析】如圖所示,建立直角坐標系,則,,,.利用向量的坐標運算可得.再利用數(shù)量積運算,可得.利用數(shù)量積性質(zhì)可得,可得.再利用,,可得,即可得出【詳解】如圖所示,建立直角坐標系則,,,,,及四邊形為矩形,,,.即點在直線上,,,,,,即(當且僅當或時取等號),綜上可得:故選:【點睛】本題考查了向量的坐標運算、數(shù)量積運算及其性質(zhì)、不等式的性質(zhì)等基礎(chǔ)知識與基本技能方法,考查了推理能力和計算能力,屬于難題10、B【解析】要使函數(shù)有意義,則需要滿足即可.【詳解】要使函數(shù)有意義,則需要滿足所以的定義域為,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】由題意,要使函數(shù)有意義,則,解得:且.即函數(shù)定義域為.考點:函數(shù)的定義域.12、【解析】根據(jù)階梯水價,結(jié)合題意進行求解即可.【詳解】解:當用水量為時,水費為,而本月交納的水費為66元,顯然用水量超過,當用水量為時,水費為,而本月交納的水費為66元,所以本月用水量不超過,即有,因此本月用水量為,故答案為:13、2【解析】由扇形的周長和面積,可求出扇形的半徑及弧長,進而可求出該扇形的圓心角.【詳解】設(shè)扇形的半徑為,所對弧長為,則有,解得,故.故答案為:2.【點睛】本題考查扇形面積公式、弧長公式的應用,考查學生的計算求解能力,屬于基礎(chǔ)題.14、【解析】根據(jù),利用誘導公式轉(zhuǎn)化為可求得結(jié)果.【詳解】因為,所以.故答案為:.【點睛】本題考查了利用誘導公式求值,解題關(guān)鍵是拆角:,屬于基礎(chǔ)題.15、【解析】考點:該題主要考查平面向量的概念、數(shù)量積的性質(zhì)等基礎(chǔ)知識,考查數(shù)學能力.16、1或-1【解析】令x=0,得y=k;令y=0,得x=?2k.∴三角形面積S=|xy|=k2.又S=1,即k2=1,值是1或-1.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)m/s(2)45【解析】(1)運用代入法直接求解即可;(2)根據(jù)題意列出不等式,結(jié)合對數(shù)的運算性質(zhì)和已知題中所給的參考數(shù)據(jù)進行求解即可.【小問1詳解】當總質(zhì)比為230時,,即A型火箭的最大速度為.【小問2詳解】A型火箭的噴流相對速度提高到了原來的1.5倍,所以A型火箭的噴流相對速度為,總質(zhì)比為,由題意得:因為,所以,即,所以不小于T的最小整數(shù)為4518、(1)(2)【解析】(1)由題意,1和3是方程的兩根,利用韋達定理即可求解;(2)利用二次函數(shù)的單調(diào)性即可求解.【小問1詳解】解:由題意,1和3是方程的兩根,所以,解得;【小問2詳解】解:由(1)知,,所以當時,單調(diào)遞減,當時,單調(diào)遞增,所以,,所以值域為.19、(1)(2)【解析】(1)由圖可求出,從而求得,由圖可知函數(shù)處取得最小值,從而可求出的值,再將點的坐標代入函數(shù)中可求出,進而可求出函數(shù)的解析式,(2)由題意求得所以,,而四邊形OMQN的面積為S,則,代入化簡利用三角函數(shù)的性質(zhì)可求得結(jié)果【小問1詳解】由圖可知的周期T滿足,得又因為,所以,解得又在處取得最小值,即,得,所以,,解得,因為,所以.由,得,所以綜上,【小問2詳解】當時,,所以.由知此時記四邊形OMQN的面積為S,則又因為,所以,所以當,即時,取得最大值所以四邊形OMQN面積的最大值是20、(1)(2)【解析】(1)根據(jù)恒成立,計算可得的值;(2)將不等式恒成立轉(zhuǎn)化為在上恒成立,令,則轉(zhuǎn)化為,利用對勾函數(shù)的性質(zhì)求得的最大值即可.【小問1詳解】因為函數(shù)(其中且)是奇函數(shù),,即恒成立,即恒成立,所以恒成立,整理得恒成立,,解得或,當時,顯然不成立,當時,,由,可得或,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年麗江市國企招聘考試基礎(chǔ)題庫
- 吉林省-《生物化學》電子教案-細胞信號轉(zhuǎn)導(人衛(wèi)版)
- 寒假安全教育一封信
- 二零二五年度高速公路服務區(qū)臨時車位租賃協(xié)議3篇
- 廣告制作常用材料教學文案
- 老年公寓入住長者健康狀況評估表-養(yǎng)老院入住老年人健康狀況評估表-健康評估表格
- 2024年阜陽市人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024年河北工業(yè)職業(yè)技術(shù)學院高職單招語文歷年參考題庫含答案解析
- 2024年長汀縣城關(guān)醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024年江西工業(yè)貿(mào)易職業(yè)技術(shù)學院高職單招職業(yè)適應性測試歷年參考題庫含答案解析
- 2024-2025學年八年級歷史上冊期末復習課件
- 2025年云南省大理州事業(yè)單位招聘339人歷年高頻重點提升(共500題)附帶答案詳解
- 《鐵路旅客運輸規(guī)程》考試復習題及答案
- 2024初中數(shù)學競賽真題訓練(學生版+解析版)(共6個)
- 規(guī)培結(jié)業(yè) 臨床基本技能操作考核評分表
- 2024-2025學年度第一學期三年級數(shù)學寒假作業(yè) 有答案
- 大型起重機械現(xiàn)場管理手冊
- 2023年考研(英語一)真題與答案解析
- 【MOOC】數(shù)學建模與創(chuàng)新實踐-西安科技大學 中國大學慕課MOOC答案
- 天冬化學成分
- 2024年貴州省公務員錄用考試《行測》真題及答案解析
評論
0/150
提交評論