黑龍江省哈爾濱市示范名校2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
黑龍江省哈爾濱市示范名校2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
黑龍江省哈爾濱市示范名校2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
黑龍江省哈爾濱市示范名校2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
黑龍江省哈爾濱市示范名校2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江省哈爾濱市示范名校2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.?dāng)?shù)列滿足,對任意,都有,則()A. B.C. D.2.在某市第一次全民核酸檢測中,某中學(xué)派出了8名青年教師參與志愿者活動,分別派往2個核酸檢測點,每個檢測點需4名志愿者,其中志愿者甲與乙要求在同一組,志愿者丙與丁也要求在同一組,則這8名志愿者派遣方法種數(shù)為()A.20 B.14C.12 D.63.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關(guān)于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm4.已知,,點為圓上任意一點,設(shè),則的最大值為()A. B.C. D.5.設(shè)點P是函數(shù)圖象上任意一點,點Q的坐標(biāo),當(dāng)取得最小值時圓C:上恰有2個點到直線的距離為1,則實數(shù)r的取值范圍為()A. B.C. D.6.已知F(3,0)是橢圓的一個焦點,過F且垂直x軸的弦長為,則該橢圓的方程為()A.+=1 B.+=1C.+=1 D.+=17.設(shè)函數(shù),,,則()A. B.C. D.8.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.9.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內(nèi)切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件10.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23則該數(shù)列的第100項為()A.4862 B.4962C.4852 D.495211.函數(shù)的定義域為,其導(dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.512.已知命題p:,,則命題p的否定為()A, B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的右焦點是,兩點是橢圓的左頂點和上頂點,若△是直角三角形,則橢圓的離心率是________.14.美學(xué)四大構(gòu)件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學(xué).素描是學(xué)習(xí)繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學(xué)習(xí)幾何體結(jié)構(gòu)素描是學(xué)習(xí)素描最重要的一步.某同學(xué)在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為45°的直角梯形(如圖所示),則該橢圓的離心率為_____.15.已知橢圓:的右焦點為,且經(jīng)過點(1)求橢圓的方程以及離心率;(2)若直線與橢圓相切于點,與直線相交于點.在軸是否存在定點,使?若存在,求出點的坐標(biāo);若不存在,說明理由16.若,則與向量同方向的單位向量的坐標(biāo)為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求函數(shù)在區(qū)間上的最大值和最小值18.(12分)已知圓的半徑為,圓心在直線上,點在圓上.(1)求圓的標(biāo)準(zhǔn)方程;(2)若原點在圓內(nèi),求過點且與圓相切的直線方程.19.(12分)某小學(xué)調(diào)查學(xué)生跳繩的情況,在五年級隨機(jī)抽取了100名學(xué)生進(jìn)行測試,得到頻率分布直方圖如下,且規(guī)定積分規(guī)則如下表:每分鐘跳繩個數(shù)得分17181920(1)求頻率分布直方圖中,跳繩個數(shù)在區(qū)間的小矩形的高;(2)依據(jù)頻率分布直方圖,把第40百分位數(shù)劃為合格線,低于合格分?jǐn)?shù)線的學(xué)生需補(bǔ)考,試確定本次測試的合格分?jǐn)?shù)線;(3)依據(jù)積分規(guī)則,求100名學(xué)生的平均得分.20.(12分)已知等差數(shù)列中,,.(1)求的通項公式;(2)求的前項和的最大值.21.(12分)已知關(guān)于的不等式(1)若不等式的解集為,求的值(2)若不等式的解集為,求的取值范圍22.(10分)已知函數(shù)(Ⅰ)討論函數(shù)的極值點的個數(shù)(Ⅱ)若,,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】首先根據(jù)題設(shè)條件可得,然后利用累加法可得,所以,最后利用裂項相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點睛】本題考查累加法求數(shù)列通項,考查利用錯位相減法求數(shù)列的前n項和,考查邏輯思維能力和計算能力,屬于常考題.2、B【解析】分(甲乙)、(丙?。┰偻唤M和不在同一組兩種情況討論,按照分類、分步計數(shù)原理計算可得;【詳解】解:依題意甲乙丙丁四人再同一組,有種;(甲乙),(丙丁)不在同一組,先從其余4人選2人與甲乙作為一組,另外2人與丙丁作為一組,再安排到兩個核酸檢測點,則有種,綜上可得一共有種安排方法,故選:B3、B【解析】由離心率求出雙曲線方程,由對稱性設(shè)出點A,B,D坐標(biāo),求出坐標(biāo),求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設(shè),則,,則,所以,則,解得:,故.故選:B4、C【解析】根據(jù)題意可設(shè),再根據(jù),求出,再利用三角函數(shù)的性質(zhì)即可得出答案.【詳解】解:由點為圓上任意一點,可設(shè),則,由,得,所以,則,則,其中,所以當(dāng)時,取得最大值為22.故選:C.5、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數(shù)形結(jié)合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數(shù)形結(jié)合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標(biāo)為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C6、C【解析】根據(jù)已知條件求得,由此求得橢圓的方程.【詳解】依題意,所以橢圓方程為.故選:C7、A【解析】根據(jù)導(dǎo)數(shù)得出在的單調(diào)性,進(jìn)而由單調(diào)性得出大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增.因為,所以,而,所以.因為,且,所以.即.故選:A8、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進(jìn)而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進(jìn)而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.9、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據(jù)兩圓內(nèi)切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當(dāng)兩圓內(nèi)切時,,解得或所以當(dāng),可得兩圓內(nèi)切,當(dāng)兩圓內(nèi)切時,不能得出(可能)故“”是“兩圓內(nèi)切”的充分不必要條件故選:B10、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進(jìn)一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D11、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側(cè)的導(dǎo)數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.12、A【解析】根據(jù)特稱命題的否定是全稱命題,結(jié)合已知條件,即可求得結(jié)果.【詳解】因為命題p:,,故命題p的否定為:,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設(shè)易知,應(yīng)用斜率的兩點式及橢圓參數(shù)關(guān)系可得,進(jìn)而求橢圓離心率.【詳解】由題設(shè),,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.14、【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故答案為:15、(1),;(2)存在定點,為【解析】(1)利用,,求解方程(2)設(shè)直線方程為,與橢圓聯(lián)立利用判別式等于0得,并求得切點坐標(biāo)及,假設(shè)存在點,利用化簡求值【詳解】(1)由已知得,,,,橢圓的方程為,離心率為;(2)在軸存在定點,為使,證明:設(shè)直線方程為代入得,化簡得由,得,,設(shè),則,,則,設(shè),則,則假設(shè)存在點解得所以在軸存在定點使【點睛】本題考查直線與橢圓的位置關(guān)系,考查切線的應(yīng)用,利用判別式等于0得坐標(biāo)是解決問題的關(guān)鍵,考查計算能力,是中檔題16、【解析】由空間向量的模的計算求得向量的模,再由單位向量的定義求得答案.【詳解】解:因為,所以,所以與向量同方向的單位向量的坐標(biāo)為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、,【解析】先求導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)得到單調(diào)區(qū)間,比較極值和端點值,即可得到最大值和最小值.【詳解】解:依題意,,令,得或,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減,又,,,所以,18、(1)或(2)或【解析】(1)先設(shè)出圓的標(biāo)準(zhǔn)方程,利用點在圓上和圓心在直線上得到圓心坐標(biāo)的方程組,進(jìn)而求出圓的標(biāo)準(zhǔn)方程;(2)先利用原點在圓內(nèi)求出圓的方程,設(shè)出切線方程,利用圓心到切線的距離等于半徑進(jìn)行求解.【小問1詳解】解:設(shè)圓的標(biāo)準(zhǔn)方程為,由已知得,解得或,故圓的方程為或.【小問2詳解】解:因為,,且原點在圓內(nèi),故圓的方程為,則圓心為,半徑為,設(shè)切線為,即,則,解得或,故切線為或,即或即為所求.19、(1)(2)(3)分【解析】(1)根據(jù)頻率之和為列方程來求得跳繩個數(shù)在區(qū)間的小矩形的高.(2)根據(jù)百分位數(shù)的計算方法計算出合格分?jǐn)?shù)線.(3)根據(jù)平均數(shù)的求法求得名學(xué)生的平均得分.【小問1詳解】設(shè)跳繩個數(shù)在區(qū)間的小矩形的高為,則,解得.【小問2詳解】第一組的頻率為,第二組的頻率為,第三組的頻率為,第四組的頻率為,第五組的頻率為,第六組的頻率為,所以第百分位數(shù)為.也即合格分?jǐn)?shù)線為.【小問3詳解】名學(xué)生的平均得分為分.20、(1);(2)30.【解析】(1)設(shè)出等差數(shù)列的公差,由已知列式求得公差,進(jìn)一步求出首項,代入等差數(shù)列的通項公式求數(shù)列的通項公式;(2)利用等差數(shù)列求和公式求和,再利用二次函數(shù)求得最值即可.【詳解】解:(1)由題意得,數(shù)列公差為,則解得:,∴(2)由(1)可得,∴∵,∴當(dāng)或時,取得最大值【點睛】本題考查利用基本量求解等差數(shù)列的通項公式,以及前n項和及最值,屬基礎(chǔ)題21、(1);(2)【解析】(1)根據(jù)關(guān)于的不等式的解集為,得到和1是方程的兩個實數(shù)根,再利用韋達(dá)定理求解.(2)根據(jù)關(guān)于的不等式的解集為.又因為,利用判別式法求解.【詳解】(1)因為關(guān)于的不等式的解集為,所以和1是方程的兩個實數(shù)根,由韋達(dá)定理可得,得(2)因為關(guān)于的不等式的解集為因為所以,解得,故的取值范圍為【點睛】本題主要考查一元二次不等式的解集和恒成立問題,還考查了運(yùn)算求解的能力,屬于中檔題.22、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三種情況討論,求得函數(shù)的單調(diào)性,結(jié)合極值的概念,即可求解;(Ⅱ)由不等式,轉(zhuǎn)化為當(dāng)時,不等式恒成立,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(Ⅰ)由題意,函數(shù)的定義域為,且,當(dāng)時,令,解得,令,解得或,故在上單調(diào)遞減,在,上單調(diào)遞增,所以有一個極值點;當(dāng)時,令,解得或,令,得,故在,上單調(diào)遞減,在上單調(diào)遞增,所以有一個極值點;當(dāng)時,上單調(diào)遞增,在上單調(diào)遞減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論