




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆貴州省畢節(jié)市納雍縣第五中學(xué)數(shù)學(xué)高三上期末經(jīng)典試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.2.某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為()A. B. C. D.23.已知等差數(shù)列的公差為,前項(xiàng)和為,,,為某三角形的三邊長(zhǎng),且該三角形有一個(gè)內(nèi)角為,若對(duì)任意的恒成立,則實(shí)數(shù)().A.6 B.5 C.4 D.34.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米5.已知三棱錐且平面,其外接球體積為()A. B. C. D.6.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.在中,角、、所對(duì)的邊分別為、、,若,則()A. B. C. D.9.已知函數(shù),其圖象關(guān)于直線對(duì)稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)()A.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變10.已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.11.的展開式中的項(xiàng)的系數(shù)為()A.120 B.80 C.60 D.4012.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù).若在區(qū)間上恒成立.則實(shí)數(shù)的取值范圍是__________.14.若實(shí)數(shù)x,y滿足約束條件,則的最大值為________.15.已知i為虛數(shù)單位,復(fù)數(shù),則=_______.16.已知,則展開式中的系數(shù)為__三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實(shí)數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請(qǐng)說明理由.18.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.19.(12分)如圖,在三棱錐中,平面平面,,.點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求證:平面.(2)判斷與平面的位置關(guān)系,并證明.20.(12分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實(shí)數(shù)x的取值范圍.21.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(diǎn)(1)求證:平面平面;(2)設(shè)為的中點(diǎn),為上的動(dòng)點(diǎn)(不與重合)求二面角的正切值的最小值22.(10分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由,可得,化簡(jiǎn)利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.2、B【解析】
首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點(diǎn)M、N在其四分之一的矩形的對(duì)角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長(zhǎng)方形的寬,圓柱底面圓周長(zhǎng)的四分之一為長(zhǎng)的長(zhǎng)方形的對(duì)角線的端點(diǎn)處,所以所求的最短路徑的長(zhǎng)度為,故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問題,在解題的過程中,需要明確兩個(gè)點(diǎn)在幾何體上所處的位置,再利用平面上兩點(diǎn)間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.3、C【解析】
若對(duì)任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時(shí)的n即可.【詳解】由已知,,又三角形有一個(gè)內(nèi)角為,所以,,解得或(舍),故,當(dāng)時(shí),取得最大值,所以.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的最值問題,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.4、B【解析】
由于實(shí)際問題中扇形弧長(zhǎng)較小,可將導(dǎo)線的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線長(zhǎng)度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.5、A【解析】
由,平面,可將三棱錐還原成長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而求解.【詳解】由題,因?yàn)?所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點(diǎn)睛】本題考查三棱錐的外接球體積,考查空間想象能力.6、B【解析】
利用復(fù)數(shù)的四則運(yùn)算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:,位于第二象限.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.7、D【解析】
根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).8、D【解析】
利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點(diǎn)睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.9、D【解析】
由函數(shù)的圖象關(guān)于直線對(duì)稱,得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對(duì)稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點(diǎn)“先向左平移個(gè)單位長(zhǎng)度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點(diǎn)睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運(yùn)算求解能力,是中檔題10、C【解析】
對(duì)函數(shù)求導(dǎo),對(duì)a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時(shí),,在上單調(diào)遞增,不合題意.當(dāng)時(shí),,在上單調(diào)遞減,也不合題意.當(dāng)時(shí),則時(shí),,在上單調(diào)遞減,時(shí),,在上單調(diào)遞增,又,所以在上有兩個(gè)零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.11、A【解析】
化簡(jiǎn)得到,再利用二項(xiàng)式定理展開得到答案.【詳解】展開式中的項(xiàng)為.故選:【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.12、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計(jì)算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.【點(diǎn)睛】本題考查周期數(shù)列的應(yīng)用,在求時(shí),先算出一個(gè)周期的和即,再將表示成即可,本題是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因?yàn)樵趨^(qū)間上恒成立,解得即故答案為:【點(diǎn)睛】本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎(chǔ)題.14、3【解析】
作出可行域,可得當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),.故答案為:3.【點(diǎn)睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.15、【解析】
先把復(fù)數(shù)進(jìn)行化簡(jiǎn),然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)模的求解,利用復(fù)數(shù)的運(yùn)算把復(fù)數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、1.【解析】
由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計(jì)算公式,求出展開式中的系數(shù).【詳解】∵已知,則,
它表示4個(gè)因式的乘積.
故其中有2個(gè)因式取,一個(gè)因式取,剩下的一個(gè)因式取1,可得的項(xiàng).
故展開式中的系數(shù).
故答案為:1.【點(diǎn)睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計(jì)算公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)見解析;(3)存在,1.【解析】
(1),求出單調(diào)區(qū)間,進(jìn)而求出,即可證明結(jié)論;(2)對(duì)(或)是否恒成立分類討論,若恒成立,沒有極值點(diǎn),若不恒成立,求出的解,即可求出結(jié)論;(3)令,可證恒成立,而,由(2)得,在為減函數(shù),在上單調(diào)遞減,在都存在,不滿足,當(dāng)時(shí),設(shè),且,只需求出在單調(diào)遞增時(shí)的取值范圍即可.【詳解】(1),,,當(dāng)時(shí),,當(dāng)時(shí),,∴,故.(2)由題知,,,①當(dāng)時(shí),,所以在上單調(diào)遞減,沒有極值;②當(dāng)時(shí),,得,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增.故在處取得極小值,無極大值.(3)不妨令,設(shè)在恒成立,在單調(diào)遞增,,在恒成立,所以,當(dāng)時(shí),,由(2)知,當(dāng)時(shí),在上單調(diào)遞減,恒成立;所以不等式在上恒成立,只能.當(dāng)時(shí),,由(1)知在上單調(diào)遞減,所以,不滿足題意.當(dāng)時(shí),設(shè),因?yàn)椋?,,即,所以在上單調(diào)遞增,又,所以時(shí),恒成立,即恒成立,故存在,使得不等式在上恒成立,此時(shí)的最小值是1.【點(diǎn)睛】本題考查導(dǎo)數(shù)綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.18、(1)答案見解析.(2)【解析】
(1)通過證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【詳解】(1)因?yàn)?,所以平面,因?yàn)槠矫妫裕驗(yàn)?,點(diǎn)為中點(diǎn),所以.因?yàn)椋云矫妫驗(yàn)槠矫?,所以平面平面.?)以點(diǎn)為坐標(biāo)原點(diǎn),直線分別為軸,軸,過點(diǎn)與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則,,,,,,,,,,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1)見解析(2)平面.見解析【解析】
(1)要證平面,只需證明,,即可求得答案;(2)連接交于點(diǎn),連接,根據(jù)已知條件求證,即可判斷與平面的位置關(guān)系,進(jìn)而求得答案.【詳解】(1),為邊的中點(diǎn),,平面平面,平面平面,平面,平面,,在內(nèi),,為所在邊的中點(diǎn),,又,,平面.(2)判斷可知,平面,證明如下:連接交于點(diǎn),連接.、、分別為邊、、的中點(diǎn),.又是的重心,,,平面,平面,平面.【點(diǎn)睛】本題主要考查了求證線面垂直和線面平行,解題關(guān)鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.20、≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當(dāng)且僅當(dāng)(a+b)·(a-b)≥0時(shí)取等號(hào),∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.21、(1)見解析(2)【解析】
(1)推導(dǎo)出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,設(shè),利用空間向量法表示出二面角的余弦值,當(dāng)余弦值取得最大時(shí),正切值求得最小值;【詳解】(1)因?yàn)?,面,,平面,平面,平面,又平面,平面平面;?)過作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,則,設(shè),則平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為則,即,令,如圖二面角的平面角為銳角,設(shè)二面角為,則,時(shí)取得最大值,最大值為,則最小值為【點(diǎn)睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.22、(1)見解析(2)【解析】
(1)取中點(diǎn),連接,,通過證明,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024湖南懷化市新晃侗族自治縣招聘國有企業(yè)工作人員擬聘用人員筆試參考題庫附帶答案詳解
- 2023-2024學(xué)年人教版高中信息技術(shù)必修一第三章第四節(jié)《數(shù)據(jù)分析報(bào)告與應(yīng)用》教學(xué)設(shè)計(jì)
- 2024年浙江嵊州市水務(wù)投資發(fā)展集團(tuán)有限公司員工招聘25人筆試參考題庫附帶答案詳解
- 2024年度長(zhǎng)江產(chǎn)投公司招聘4人筆試參考題庫附帶答案詳解
- 2024年宿州泗縣縣屬國有企業(yè)公開招聘工作人員33人筆試參考題庫附帶答案詳解
- 2025年河南測(cè)繪職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫一套
- 2024年中廣核環(huán)保產(chǎn)業(yè)有限公司招聘7人筆試參考題庫附帶答案詳解
- 2024-2025學(xué)年初升高銜接英語句子成分 教學(xué)設(shè)計(jì)
- 2024年中國中醫(yī)藥出版社招聘筆試參考題庫附帶答案詳解
- 《記念劉和珍君》《為了忘卻的記念》聯(lián)讀教學(xué)設(shè)計(jì)
- 兒童福利機(jī)構(gòu)安全管理規(guī)范
- 人工智能技術(shù)應(yīng)用專業(yè)調(diào)研報(bào)告
- 鞋類制造過程的節(jié)能與減排
- 第1課 おじぎ 課件高中日語人教版第一冊(cè)-1
- 08SG510-1 輕型屋面平行弦屋架(圓鋼管、方鋼管)
- 事前績(jī)效評(píng)估具體工作實(shí)施方案
- 六年級(jí)下冊(cè)語文第一單元測(cè)試卷 部編版(含答案)
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫新版
- 《研學(xué)旅行市場(chǎng)營銷》課件-研學(xué)旅行市場(chǎng)營銷之社群營銷
- 醫(yī)美機(jī)構(gòu)客戶滿意度調(diào)查表
- clsim100-32藥敏試驗(yàn)標(biāo)準(zhǔn)2023中文版
評(píng)論
0/150
提交評(píng)論