2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高二上數(shù)學期末質(zhì)量檢測試題含解析_第1頁
2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高二上數(shù)學期末質(zhì)量檢測試題含解析_第2頁
2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高二上數(shù)學期末質(zhì)量檢測試題含解析_第3頁
2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高二上數(shù)學期末質(zhì)量檢測試題含解析_第4頁
2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高二上數(shù)學期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高二上數(shù)學期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線m經(jīng)過,兩點,則直線m的斜率為()A.-2 B.C. D.22.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.3.圓C:的圓心坐標和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和4.數(shù)列,,,,…,是其第()項A.17 B.18C.19 D.205.設,是雙曲線()的左、右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.6.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無極大值,極小值為-5C.極大值為27,無極小值 D.無極大值,無極小值7.設,向量,,,且,,則()A. B.C.3 D.48.《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.9.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-1310.如圖,在三棱柱中,為的中點,若,,,則下列向量與相等的是()A. B.C. D.11.已知點在橢圓上,與關(guān)于原點對稱,,交軸于點,為坐標原點,,則橢圓的離心率為()A. B.C. D.12.設曲線在點處的切線與x軸、y軸分別交于A,B兩點,O為坐標原點,則的面積等于()A.1 B.2C.4 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知某圓錐的高為4,體積為,則其側(cè)面積為________14.已知橢圓,A,B是橢圓C上的兩個不同的點,設,若,則直線AB的方程為______15.已知點為拋物線的焦點,,點為拋物線上一動點,當最小時,點恰好在以為焦點的雙曲線上,則該雙曲線的離心率為___________.16.已知圓:,:.則這兩圓的連心線方程為_________(答案寫成一般式方程)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列滿足(1)求的通項公式;(2)記的前n項和為,證明:,,成等差數(shù)列18.(12分)如圖,在四棱錐中,底面,,,,,為上一點,且.請用空間向量知識解答下列問題:(1)求證:平面;(2)求平面與平面夾角的大小.19.(12分)已知橢圓C:的離心率為,點和點都在橢圓C上,直線PA交x軸于點M(1)求橢圓C的方程,并求點M的坐標(用m,n表示);(2)設O為原點,點B與點A關(guān)于x軸對稱,直線PB交x軸于點N,問:y軸上是否存在點Q(不與O重合),使得?若存在,求點Q的坐標,若不存在,說明理由20.(12分)如圖,在四棱錐中,底面滿足,,底面,且,.(1)證明平面;(2)求平面與平面的夾角.21.(12分)已知圓(1)若一直線被圓C所截得的弦的中點為,求該直線的方程;(2)設直線與圓C交于A,B兩點,把的面積S表示為m的函數(shù),并求S的最大值22.(10分)如圖,在長方體中,底面是邊長為1的正方形,側(cè)棱長為2,且動點P在線段AC上運動(1)若Q為的中點,求點Q到平面的距離;(2)設直線與平面所成角為,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A2、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B3、C【解析】先將方程化為一般形式,再根據(jù)公式計算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標為,半徑為故選:C4、D【解析】根據(jù)題意,分析歸納可得該數(shù)列可以寫成,,,……,,可得該數(shù)列的通項公式,分析可得答案.【詳解】解:根據(jù)題意,數(shù)列,,,,…,,可寫成,,,……,,對于,即,為該數(shù)列的第20項;故選:D.【點睛】此題考查了由數(shù)列的項歸納出數(shù)列的通項公式,考查歸納能力,屬于基礎(chǔ)題.5、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關(guān)知識,考查了雙曲線的離心率和余弦定理的應用,屬于中檔題6、B【解析】求出得出的單調(diào)區(qū)間,從而可得答案.【詳解】當時,,單調(diào)遞減.當時,,單調(diào)遞增.所以當時,取得極小值,極小值為,無極大值.故選:B7、C【解析】根據(jù)空間向量垂直與平行的坐標表示,求得的值,得到向量,進而求得,得到答案.【詳解】由題意,向量,,,因為,可得,解得,即,又因為,可得,解得,即,可得,所以.故選:C.8、A【解析】根據(jù)平面,平面求解.【詳解】因為平面,平面,所以,又,,,所以,所以,故選:A9、A【解析】根據(jù)兩圓有且僅有一條公切線,得到兩圓內(nèi)切,從而可求出結(jié)果.【詳解】因為圓,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以兩圓內(nèi)切,因此,即,解得.故選:A.10、A【解析】利用空間向量基本定理求解即可【詳解】由于M是的中點,所以故選:A11、B【解析】由,得到,結(jié)合,得到,進而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設,則,由,可得,所以,因為,可得,又由,兩式相減得,即,即,又因為,所以,即又由,所以,解得.故選:B.12、C【解析】求出原函數(shù)的導函數(shù),得到函數(shù)在處的導數(shù)值,寫出切線方程,分別求得切線在兩坐標軸上的坐標,再由三角形面積公式求解【詳解】由,得,,又切線過點,曲線在點處的切線方程為,取,得,取,得的面積等于故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設該圓錐的底面半徑為r,由圓錐的體積V=πr2h,可解得r的值,再由勾股定理求得圓錐的母線長l,而側(cè)面積S=πrl,代入數(shù)據(jù)即可得解【詳解】設該圓錐的底面半徑為r,圓錐的體積V=πr2h=πr2×4=12π,解得r=3∴圓錐母線長l==5,∴側(cè)面積S=πrl=15π故答案為:15π【點睛】本題考查圓錐的側(cè)面積和體積的計算,理解圓錐的結(jié)構(gòu)特征是解題的關(guān)鍵,考查學生的空間立體感和運算能力,屬于基礎(chǔ)題14、【解析】由已知可得為的中點,再由點差法求所在直線的斜率,即可求得直線的方程【詳解】由,可得為的中點,且在橢圓內(nèi),設,,,,則,,,則,即所在直線的斜率為直線的方程為,即故答案為:15、【解析】設點,根據(jù)拋物線的定義表示出,將用表示,并逐步轉(zhuǎn)化為一個基本不等式形式,從而求出取最小值時的點的坐標,再根據(jù)雙曲線的定義及離心率的公式求值.【詳解】由題意可得,,,拋物線的準線為,設點,根據(jù)對稱性,不妨設,由拋物線的定義可知,又,所以,當且僅當時,等號成立,此時,設以為焦點的雙曲線方程為,則,即,又,,所以離心率.故答案為:.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是將的坐標表達式逐漸轉(zhuǎn)化為一個可以用基本不等式求最值的式子,從而找出取最小值時的點的坐標.16、【解析】求出兩圓的圓心坐標,再利用兩點式求出直線方程,再化成一般式即可【詳解】解:圓,即,兩圓的圓心為:和,這兩圓的連心線方程為:,即故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)設等比數(shù)列的公比為,根據(jù),求得的值,即可求得數(shù)列的通項公式;(2)由等比數(shù)列的求和公式求得,得到,,化簡得到,即可求解【小問1詳解】解:設等比數(shù)列的公比為,因為,所以,解得,所以,所以數(shù)列的通項公式【小問2詳解】解:由(1)可得,,,所以,所以,即,,成等差數(shù)列18、(1)證明見解析(2)【解析】(1)以為原點,、、分別為軸、軸、軸建立空間直角坐標系,證明出,,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)利用空間向量法可求得平面與平面夾角的大小.【小問1詳解】證明:底面,,故以為原點,、、分別為軸、軸、軸建立如圖所示的空間直角坐標系,則、、、、、,所以,,,,則,,即,,又,所以,平面.【小問2詳解】解:知,,,設平面的法向量為,則,,即,令,可得,設平面的法向量為,由,,即,令,可得,,因此,平面與平面夾角的大小為.19、(1),;(2)存在或,使得,理由見解析.【解析】(1)根據(jù)離心率,及求出,,進而得到橢圓方程及用m,n表示點M的坐標;(2)假設存在,根據(jù)得到,表達出點坐標,得到,結(jié)合得到,從而求出答案.【小問1詳解】由離心率可知:,又,,解得:,,故橢圓C:,直線PA為:,令得:,所以;【小問2詳解】存在或,使得,理由如下:假設,使得,則,其中,直線:,令得:,則,,解得:,其中,故,所以,所以或20、(1)證明見解析(2)【解析】(1)由已知結(jié)合線面平行判定定理可得;(2)建立空間直角坐標系,由向量法可解.【小問1詳解】∵,,∴,又平面,平面,∴平面;【小問2詳解】∵平面且、平面,∴,,又∵,故分別以所在直線為軸,軸、軸,建立如圖空間直角坐標系,如圖所示:由,,可得:,,,,,由已知平面,平面,,,,,平面,所以平面,為平面的一個法向量,且;設為平面的一個法向量,則,,,,,,,令,則,,,設平面與平面的夾角大小為,,由得:平面與平面的夾角大小為21、(1)(2),最大值為.【解析】(1)利用垂徑定理求出斜率,即可求出直線的方程;(2)利用幾何法表示出弦長與d的關(guān)系,利用基本不等式求出的面積S的最大值【小問1詳解】圓化為標準方程為:.則.設所求的直線為m.由圓的幾何性質(zhì)可知:,所以,所以所求的直線為:,即.【小問2詳解】設圓心C到直線l的距離為d,則,且,所以因為直線與圓C交于A,B兩點,所以,解得:且.而的面積:因為所以(其中時等號成立).所以S的最大值為.22、(1)1(2)【解析】(1)以AB,AD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論