版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省撫州市崇仁縣第二中學2025屆高一上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù)x,y滿足,那么的最大值為()A. B.C.1 D.22.已知命題p:x為自然數(shù),命題q:x為整數(shù),則p是q的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.實驗測得四組(x,y)的值為(1,2),(2,3),(3,4),(4,5),則y與x之間的回歸直線方程為()A.B.C.D.4.已知、是方程兩個根,且、,則的值是()A. B.C.或 D.或5.已知是方程的兩根,且,則的值為A. B.C.或 D.6.若,,則等于()A. B.3C. D.7.已知函數(shù),若,,,則,,的大小關(guān)系為A. B.C. D.8.已知函數(shù),則“”是“函數(shù)在區(qū)間上單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.命題A:命題B:(x+2)·(x+a)<0;若A是B的充分不必要條件,則a的取值范圍是A.(-∞,-4) B.[4,+∞)C.(4,+∞) D.(-∞,-4]10.已知向量,則銳角等于A.30° B.45°C.60° D.75°二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),實數(shù),滿足,且,若在上的最大值為2,則____12.若函數(shù),則________13.如圖,某化學實驗室的一個模型是一個正八面體(由兩個相同的正四棱錐組成,且各棱長都相等)若該正八面體的表面積為,則該正八面體外接球的體積為___________;若在該正八面體內(nèi)放一個球,則該球半徑的最大值為___________.14.已知角的終邊經(jīng)過點,則__15.函數(shù)f(x)=+的定義域為____________16.化簡求值(1)化簡(2)已知:,求值三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.2021年秋季學期,某省在高一推進新教材,為此該省某市教育部門組織該市全體高中教師在暑假期間進行相關(guān)學科培訓,培訓后舉行測試(滿分100分),從該市參加測試的數(shù)學老師中抽取了100名老師并統(tǒng)計他們的測試分數(shù),將成績分成五組,第一組[65,70),第二組[70,75),第三組[75,80),第四組[80,85),第五組[85,90],得到如圖所示的頻率分布直方圖(1)求a的值以及這100人中測試成績在[80,85)的人數(shù);(2)估計全市老師測試成績的平均數(shù)(同組中的每個數(shù)據(jù)都用該組區(qū)間中點值代替)和第50%分數(shù)位(保留兩位小數(shù));(3)若要從第三、四、五組老師中用分層抽樣的方法抽取6人作學習心得交流分享,并在這6人中再抽取2人擔當分享交流活動的主持人,求第四組至少有1名老師被抽到的概率18.設向量,且與不共線(1)求證:;(2)若向量與的模相等,求.19.已知函數(shù).(1)求函數(shù)的定義域;(2)若對任意恒有,求實數(shù)的取值范圍.20.心理學家通過研究學生的學習行為發(fā)現(xiàn);學生的接受能力與老師引入概念和描述問題所用的時間相關(guān),教學開始時,學生的興趣激增,學生的興趣保持一段較理想的狀態(tài),隨后學生的注意力開始分散,分析結(jié)果和實驗表明,用表示學生掌握和接受概念的能力,x表示講授概念的時間(單位:min),可有以下的關(guān)系:(1)開講后第5min與開講后第20min比較,學生的接受能力何時更強一些?(2)開講后多少min學生的接受能力最強?能維持多少時間?(3)若一個新數(shù)學概念需要55以上(包括55)的接受能力以及13min時間,那么老師能否在學生一直達到所需接受能力的狀態(tài)下講授完這個概念?21.如圖,是平面四邊形的對角線,,,且.現(xiàn)在沿所在的直線把折起來,使平面平面,如圖.(1)求證:平面;(2)求點到平面的距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)重要不等式即可求最值,注意等號成立條件.【詳解】由,可得,當且僅當或時等號成立.故選:C.2、A【解析】根據(jù)兩個命題中的取值范圍,分析是否能得到pq和qp【詳解】若x為自然數(shù),則它必為整數(shù),即p?q但x為整數(shù)不一定是自然數(shù),如x=-2,即qp故p是q的充分不必要條件故選:A.3、A【解析】根據(jù)所給數(shù)據(jù),求出樣本中心點,把樣本中心點代入所給四個選項中驗證,即可得答案【詳解】解:由已知可得,所以這組數(shù)據(jù)的樣本中心點為,因樣本中心必在回歸直線上,所以把樣本中心點代入四個選項中驗證,可得只有成立,故選:A.4、B【解析】先用根與系數(shù)的關(guān)系可得+=,=4,從而可得<0,<0,進而,所以,然后求的值,從而可求出的值.【詳解】由題意得+=,=4,所以,又、,故,所以,又.所以.故選:B.5、A【解析】∵是方程的兩根,∴,∴又,∴,∵,∴又,∴,∴.選A點睛:解決三角恒等變換中給值求角問題的注意點解決“給值求角”問題時,解題的關(guān)鍵也是變角,即把所求角用含已知角的式子表示,然后求出適合的一個三角函數(shù)值.再根據(jù)所給的條件確定所求角的范圍,最后結(jié)合該范圍求得角,有時為了解題需要壓縮角的取值范圍6、A【解析】根據(jù)已知確定,從而求得,進而求得,根據(jù)誘導公式即求得答案.【詳解】因為,,所以,則,故,故選:A7、C【解析】根據(jù)函數(shù)解析式先判斷函數(shù)的單調(diào)性和奇偶性,然后根據(jù)指數(shù)和對數(shù)的運算法則進行化簡即可【詳解】∵f(x)=x3,∴函數(shù)f(x)是奇函數(shù),且函數(shù)為增函數(shù),a=﹣f(log3)=﹣f(﹣log310)=f(log310),則2<log39.1<log310,20.9<2,即20.9<log39.1<log310,則f(209)<f(log39.1)<f(log310),即c<b<a,故選C【點睛】本題主要考查函數(shù)值的大小的比較,根據(jù)函數(shù)解析式判斷函數(shù)的單調(diào)性和奇偶性是解決本題的關(guān)鍵8、A【解析】先由在區(qū)間上單調(diào)遞增,求出的取值范圍,再根據(jù)充分條件,必要條件的定義即可判斷.【詳解】解:的對稱軸為:,若在上單調(diào)遞增,則,即,在區(qū)間上單調(diào)遞增,反之,在區(qū)間上單調(diào)遞增,,故“”是“函數(shù)在區(qū)間上單調(diào)遞增”的充分不必要條件.故選:A.9、A【解析】記根據(jù)題意知,所以故選A10、B【解析】因為向量共線,則有,得,銳角等于45°,選B二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】由題意結(jié)合函數(shù)的解析式分別求得a,b的值,然后求解的值即可.【詳解】繪制函數(shù)的圖像如圖所示,由題意結(jié)合函數(shù)圖像可知可知,則,據(jù)此可知函數(shù)在區(qū)間上的最大值為,解得,且,解得:,故.【點睛】本題主要考查函數(shù)圖像的應用,對數(shù)的運算法則等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.12、0【解析】令x=1代入即可求出結(jié)果.【詳解】令,則.【點睛】本題主要考查求函數(shù)的值,屬于基礎(chǔ)題型.13、①.②.【解析】由已知求得正八面體的棱長為,進而求得,即知外接球的半徑,進而求得體積;若球O在正八面體內(nèi),則球O半徑的最大值為O到平面的距離,證得平面,再利用相似可知,即可求得半徑.【詳解】如圖,記該八面體為,O為正方形的中心,則平面設,則,解得.在正方形中,,則在直角中,知,即正八面體外接球的半徑為故該正八面體外接球的體積為.若球O在正八面體內(nèi),則球O半徑的最大值為O到平面的距離.取的中點E,連接,,則,又,,平面過O作于H,又,,所以平面,又,,則,則該球半徑的最大值為.故答案為:,14、【解析】根據(jù)終邊上的點可得,再應用差角正弦公式求目標式的值.【詳解】由題設,,所以.故答案為:.15、【解析】根據(jù)題意,結(jié)合限制條件,解指數(shù)不等式,即可求解.【詳解】根據(jù)題意,由,解得且,因此定義域為.故答案為:.16、(1)(2)【解析】(1)利用誘導公式化簡即可;(2)先進行弦化切,把代入即可求解.【小問1詳解】.【小問2詳解】因為,所以.所以.又,所以.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);20;(2)分,76.67分(3)【解析】(1)根據(jù)頻率之和為1,可求得a的值,根據(jù)頻數(shù)的計算可求得測試成績在[80,85)的人數(shù);(2)根據(jù)頻率分布直方圖可計算中位數(shù),即可求得第50%分數(shù)位;(3)列舉出所有可能的抽法,再列出第四組至少有1名老師被抽到可能情況,根據(jù)古典概型的概率公式求得答案.【小問1詳解】由題意得:,解得;這100人中測試成績在[80,85)的人數(shù)為(人);【小問2詳解】平均數(shù)為:(分),設中位數(shù)為m,且,則,解得,故第50%分數(shù)位76.67分;【小問3詳解】第三組頻率為,第四組頻率為,第五組頻率為,故從第三、四、五組老師中用分層抽樣的方法抽取6人作學習心得交流分享,三組人數(shù)為3人,2人和1人,記第三組抽取人為,第四組抽取的人為,第五組抽取的人為,則抽取2人的所有情況如下:共15種,其中第四組至少有1名老師被抽到的抽法有共9種,故第四組至少有1名老師被抽到的概率為.18、(1)證明見解析;(2)或.【解析】(1)先求出,再計算的值,發(fā)現(xiàn),得。(2)先利用向量的坐標表示求出,的坐標,通過,列方程求出?!驹斀狻拷猓海?)證明:由題意可得,,,.(2)向量與的模相等,,.又,,解得,,又或.【點睛】本題考查向量垂直,向量的模的坐標表示,注意計算不要出錯即可。19、(1)答案見解析;(2).【解析】(1)根據(jù)對數(shù)的真數(shù)為正即可求解;(2)對任意恒有對恒成立,參變分離即可求解a的范圍.【小問1詳解】由得,,等價于,∵方程的,當,即時,恒成立,解得,當,即時,原不等式即為,解得且;當,即,又,即時,方程的兩根、,∴解得或,綜上可得當時,定義域為,當時,定義域為且,當時,定義域為或;【小問2詳解】對任意恒有,即對恒成立,∴,而,在上是減函數(shù),∴,所以實數(shù)的取值范圍為.20、(1)開講后第5min比開講后第20min,學生接受能力強一些.;(2)6min;(3)詳見解析.【解析】第一步已知自變量值求函數(shù)值,比較后給出答案;第二步是二次函數(shù)求最值問題;第三步試題解析:(1),,則開講后第5min比開講后第20min,學生的接受能力更強一些.](2)當時,,當時,開講后10min(包括10分鐘)學生的接受能力最強,能維持6min.(3)由當時,,得;當時,,得持續(xù)時間答:老師不能在學生一直達到所需接受能力的狀態(tài)下講授完這個概念.考點:1.求函數(shù)值;2.配方法求二次函數(shù)的最值;3.分段函數(shù)解不等式.21、(1)見解析;(2).【解析】(1)由平面平面,平面平面,且平面,且,根據(jù)線面垂直的判定定理可得平面;(2)取的中點,連.由,可得,又平面,所以,又,所以平面,因此就是點到平面的距離,在中,,,所以.試題解析:(1)證明:因為平面平面平面平面,平面,且,所以平面(2)取的中點,連.因為,所以,又平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度產(chǎn)品包裝設計策劃合同范本4篇
- 2025年度打樁機租賃項目風險評估與管理合同2篇
- 個性化人身損害補償協(xié)議模板2024版版B版
- 二零二四雙方自愿離婚協(xié)議書撰寫指南3篇
- 二零二五年酒店安保服務與應急管理合作合同2篇
- 個人借款協(xié)議模板:2024年私人資金借用協(xié)議版B版
- 專業(yè)行紀服務與委托責任協(xié)議條款版A版
- 二零二五版互聯(lián)網(wǎng)數(shù)據(jù)中心托管技術(shù)服務合同協(xié)議2篇
- 2025年度科技園區(qū)場地租賃與科技創(chuàng)新平臺建設合同范本4篇
- 2025年度測量儀器銷售與全球分銷合同4篇
- 保潔服務崗位檢查考核評分標準
- 稱量與天平培訓試題及答案
- 超全的超濾與納濾概述、基本理論和應用
- 2020年醫(yī)師定期考核試題與答案(公衛(wèi)專業(yè))
- 2022年中國育齡女性生殖健康研究報告
- 各種靜脈置管固定方法
- 消防報審驗收程序及表格
- 教育金規(guī)劃ppt課件
- 呼吸機波形分析及臨床應用
- 常用緊固件選用指南
- 私人借款協(xié)議書新編整理版示范文本
評論
0/150
提交評論