版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省孝感市漢川市漢川二中2025屆高一上數(shù)學期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),下列關于該函數(shù)結論錯誤的是()A.的圖象關于直線對稱 B.的一個周期是C.的最大值為 D.是區(qū)間上的增函數(shù)2.函數(shù),若恰有3個零點,則a的取值范圍是()A. B.C. D.3.鄭州地鐵1號線的開通運營,極大方便了市民的出行.某時刻從二七廣場站駛往博學路站的過程中,10個車站上車的人數(shù)統(tǒng)計如下:70,60,60,60,50,40,40,30,30,10.這組數(shù)據(jù)的平均數(shù),眾數(shù),90%分位數(shù)的和為()A.125 B.135C.165 D.1704.設,,則下面關系中正確的是()A B.C. D.5.已知函數(shù),,其函數(shù)圖象的一個對稱中心是,則該函數(shù)的一個單調遞減區(qū)間是()A. B.C. D.6.若將函數(shù)的圖象向左平移個單位長度,則平移后圖象的對稱軸為()A. B.C. D.7.設a,b是兩條不同的直線,α,β是兩個不同的平面,則下列正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,,則8.在長方體中,,則異面直線與所成角的大小是A. B.C. D.9.已知函數(shù)(,,)的圖象如圖所示,則()A.B.對于任意,,且,都有C.,都有D.,使得10.冪函數(shù)的圖象關于軸對稱,且在上是增函數(shù),則的值為()A. B.C. D.和二、填空題:本大題共6小題,每小題5分,共30分。11.從含有兩件正品和一件次品b的3件產(chǎn)品中,按先后順序任意取出兩件產(chǎn)品,每次取出后不放回,取出的兩件產(chǎn)品都是正品的概率為__________.12.正三棱錐P﹣ABC的底面邊長為1,E,F(xiàn),G,H分別是PA,AC,BC,PB的中點,四邊形EFGH的面積為S,則S的取值范圍是__13.若冪函數(shù)在區(qū)間上是減函數(shù),則整數(shù)________14.已知扇形的半徑為2,面積為,則該扇形的圓心角的弧度數(shù)為______.15.直三棱柱ABC-A1B1C1,內(nèi)接于球O,且AB⊥BC,AB=3.BC=4.AA1=4,則球O的表面積______16.命題“,”的否定是___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期;(2)當時,求的最大值和最小值.18.如圖,在中,為邊上的一點,,且與的夾角為.(1)設,求,的值;(2)求的值.19.某工廠某種航空產(chǎn)品的年固定成本為萬元,每生產(chǎn)件,需另投入成本為,當年產(chǎn)量不足件時,(萬元).當年產(chǎn)量不小于件時,(萬元).每件商品售價為萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.(1)寫出年利潤(萬元)關于年產(chǎn)量(件)的函數(shù)解析式;(2)年產(chǎn)量為多少件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?20.如圖,某園林單位準備綠化一塊直徑為BC的半圓形空地,外的地方種草,的內(nèi)接正方形PQRS為一水池,其余的地方種花.若,,設的面積為,正方形PQRS的面積為.(1)用a,表示和;(2)當a為定值,變化時,求的最小值,及此時的值.21.已知函數(shù).(1)用“五點法”做出函數(shù)在上的簡圖;(2)若方程在上有兩個實根,求a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用誘導公式證明可判斷A;利用可判斷B;利用三角函數(shù)的性質可判斷C;利用復合函數(shù)的單調性可判斷D.【詳解】對于A,,所以的圖象關于直線對稱,故A正確;對于B,,所以的一個周期是,故B正確;對于C,,所以的最大值為,當時,,取得最大值,所以的最大值為,故C不正確;對于D,在上單調遞增,,在上單調遞增,在上單調遞減,,根據(jù)復合函數(shù)的單調性易知,在上單調遞增,所以是區(qū)間上的增函數(shù),故D正確.故選:C.【點睛】關鍵點點睛:解決本題的關鍵是熟練掌握函數(shù)對稱性及周期性的判定及三角函數(shù)的圖象與性質.2、B【解析】畫出的圖像后,數(shù)形結合解決函數(shù)零點個數(shù)問題.【詳解】做出函數(shù)圖像如下由得,由得故函數(shù)有3個零點若恰有3個零點,即函數(shù)與直線有三個交點,則a的取值范圍,故選:B3、D【解析】利用公式可求平均數(shù)和90%分位數(shù),再求出眾數(shù)后可得所求的和.【詳解】這組數(shù)據(jù)的平均數(shù)為,而,故90%分位數(shù),眾數(shù)為,故三者之和為,故選:D.4、D【解析】根據(jù)元素與集合關系,集合與集合的關系判斷即可得解.【詳解】解:因為,,所以,.故選:D.5、D【解析】由正切函數(shù)的對稱中心得,得到,令可解得函數(shù)的單調遞減區(qū)間.【詳解】因為是函數(shù)的對稱中心,所以,解得因為,所以,,令,解得,當時,函數(shù)的一個單調遞減區(qū)間是故選:D【點睛】本題考查正切函數(shù)的圖像與性質,屬于基礎題.6、C【解析】由題意得,將函數(shù)的圖象向左平移個單位長度,得到,由,得,即平移后的函數(shù)的對稱軸方程為,故選C7、D【解析】由空間中直線、平面的位置關系逐一判斷即可得解.【詳解】解:由a,b是兩條不同的直線,α,β是兩個不同的平面,知:在A中,若,,則或,故A錯誤;在B中,若,,則,故B錯誤;在C中,若,,則或,故C錯誤;在D中,若,,,則由面面垂直的判定定理得,故D正確;故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查數(shù)形結合思想,屬中檔題8、C【解析】連接為異面直線與所成角,幾何體是長方體,是,,異面直線與所成角的大小是,故選C.9、C【解析】根據(jù)給定函數(shù)圖象求出函數(shù)的解析式,再逐一分析各個選項即可判斷作答.【詳解】觀察函數(shù)的圖象得:,令的周期為,則,即,,由,且得:,于是有,對于A,,A不正確;對于B,取且,滿足,,且,而,,此時,B不正確;對于C,,,,即,都有,C正確;對于D,由得:,解得:,令,解得與矛盾,D不正確.故選:C10、D【解析】分別代入的值,由冪函數(shù)性質判斷函數(shù)增減性即可.【詳解】因為,,所以當時,,由冪函數(shù)性質得,在上是減函數(shù);所以當時,,由冪函數(shù)性質得,在上是常函數(shù);所以當時,,由冪函數(shù)性質得,圖象關于y軸對稱,在上是增函數(shù);所以當時,,由冪函數(shù)性質得,圖象關于y軸對稱,在上是增函數(shù);故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】基本事件總數(shù)6,取出的兩件產(chǎn)品都是正品包含的基本事件個數(shù)2,由此能求出取出的兩件產(chǎn)品都是正品的概率.【詳解】從含有兩件正品和一件次品的3件產(chǎn)品中,按先后順序任意取出兩件產(chǎn)品,每次取出后不放回,共包含,,,,,6個基本事件,取出的兩件產(chǎn)品都是正品包含,2個基本事件,∴取出的兩件產(chǎn)品都是正品的概率為,故答案為:.12、(,+∞)【解析】由正三棱錐可得四邊形EFGH為矩形,并可得其邊長與三棱錐棱長關系,從而可得面積S的范圍.【詳解】∵棱錐P﹣ABC為底面邊長為1的正三棱錐∴AB⊥PC又∵E,F(xiàn),G,H,分別是PA,AC,BC,PD的中點,∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC則四邊形EFGH為一個矩形又∵PC,∴EF,∴S=EFEH,∴四邊形EFGH的面積S的取值范圍是(,+∞),故答案為:(,+∞)三、13、2【解析】由題意可得,求出的取值范圍,從而可出整數(shù)的值【詳解】因為冪函數(shù)在區(qū)間上是減函數(shù),所以,解得,因為,所以,故答案為:214、【解析】由扇形的面積公式和弧度制的定義,即可得出結果.【詳解】由扇形的面積公式可得,所以圓心角為.故答案為:15、【解析】利用三線垂直聯(lián)想長方體,而長方體外接球直徑為其體對角線長,容易得到球半徑,得解【詳解】直三棱柱中,易知AB,BC,BB1兩兩垂直,可知其為長方體的一部分,利用長方體外接球直徑為其體對角線長,可知其直徑為,∴=41π,故答案為41π【點睛】本題主要考查了三棱柱的外接球和球的表面積的計算,意在考查學生對這些知識的理解掌握水平和空間想象能力.16、“,”【解析】直接利用全稱命題的否定是特稱命題寫出結果即可【詳解】因為全稱命題的否定為特稱命題,故命題“,”的否定為:“,”故答案為:“,”三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為,最小值為.【解析】(1)展開兩角差的余弦,再由輔助角公式化簡,利用周期公式求周期;(2)由x的范圍求出相位的范圍,再由正弦函數(shù)的有界性可求函數(shù)在區(qū)間上的最大值和最小值.【小問1詳解】,,的最小正周期為;【小問2詳解】因,所以,所以,所以函數(shù)在區(qū)間上的最大值為,最小值為.18、(1),;(2).【解析】(1)由向量的加減運算,可得,進而可得答案.(2)用表示,利用向量數(shù)量積公式,即可求得結果.【詳解】(1)因,所以..又,又因為、不共線,所以,,(2)結合(1)可得:.,因為,,且與的夾角為.所以.【點睛】本題考查了向量的加減運算、平面向量基本定理、向量的數(shù)量積運算等基本數(shù)學知識,考查了運算求解能力和轉化的數(shù)學思想,屬于基礎題目.19、(1);(2)年產(chǎn)量為件時,利潤最大為萬元.【解析】(1)實際應用題首先要根據(jù)題意,建立數(shù)學模型,即建立函數(shù)關系式,這里,要用分類討論的思想,建立分段函數(shù)表達式;(2)根據(jù)建立的函數(shù)關系解模,即運用數(shù)學知識求函數(shù)的最值,這里第一段,運用的是二次函數(shù)求最值,而第二段,則可運用基本不等式求最值,然后再作比較,確定最終的結果,最后要回到實際問題作答.試題解析:解:(1)當時,;當時,,所以.(2)當時,此時,當時,取得最大值萬元.當時,此時,當時,即時,取得最大值萬元,所以年產(chǎn)量為件時,利潤最大為萬元.考點:函數(shù)、不等式的實際應用.20、(1);(2)當時,的值最小,最小值為【解析】(1)利用已知條件,根據(jù)銳角三角形中正余弦的利用,即可表示出和;(2)根據(jù)題意,將表示為的函數(shù),利用倍角公式對函數(shù)進行轉化,利用換元法,借助對勾函數(shù)的單調性,從而求得最小值.【詳解】(1)在中,,所以;設正方形的邊長為x,則,,由,得,解得;所以;(2),令,因為,所以,則,所以;設,根據(jù)對勾函數(shù)的單調性可知,在上單調遞減,因此當時,有最小值,此時,解得;所以當時,的值最小,最小值為.【點睛】本題考查倍角公式的使用,三角函數(shù)在銳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物化學糖代謝知識點總結
- (完整版)新概念第二冊15課課件
- 企業(yè)學校招聘會141
- 福師幼兒園組織與管理在線作業(yè)二
- 學校節(jié)約用水勞動方案
- 2024學年度課程簡介
- 貴州省科技企業(yè)人員聘用合同
- 美容院混凝土地面施工方案
- 輸血不良反應評估與處置預案
- 高一語文閱讀心理輔導方案
- 小學科學實驗室儀器設備增補說明
- 資格評審表(招投標專用)
- 譯林版一年級上冊英語全冊課件
- 英語顏色詞語與心理情緒研究性學習展示
- 致青年教師讀后感教師讀書心得 讀致青年教師讀書交流(三篇)
- VMware SRM方案介紹專業(yè)知識
- 《測量》教學反思與評價(10篇)
- 內(nèi)蒙古自治區(qū)呼和浩特市2022年九年級上學期期末數(shù)學試題(附答案)
- 高中信息技術 必修一《數(shù)據(jù)與計算》初識數(shù)據(jù)與計算 單元教學設計
- A0422脫密期回訪記錄表
- 飼料加工系統(tǒng)粉塵防爆安全規(guī)程
評論
0/150
提交評論